A DSGE Analysis of Climate Shocks in a Tourism-Dependent Small Open Economy

Allan Wright Central Bank of The Bahamas

September 2025

Outline

Introduction

Model Description

Calibration and Steady-State

Introduction

- Tourism-dependent small open economies like the Bahamas face unique vulnerabilities:
 - ► High exposure to climate-related shocks (e.g., hurricanes).
 - Amplified by reliance on foreign tourism demand.
- Objective: Develop a DSGE model to analyze macroeconomic dynamics.
 - Distinct tourism and non-tourism sectors.
 - Flexible exchange rate and Taylor rule.
 - Focus on negative tourism productivity shock (e_{a_t}) as a hurricane and foreign demand shock $(e_{c_{us}})$.

Contributions

- ► Model climate shocks' impact on tourism-dependent economies; novel modeling in DSGE literature.
- Multi-sector economy with climate shock (negative productivity) hitting the tourism sector.
- ► Policy insights for resilience in tourism-driven economies like the Bahamas.

Main Results

- ▶ Targeted Steady-State values. Tourism contributes 70% to output $(y_t = 0.7 \cdot y)$. Consumption is 65% domestic $(c_h = 0.795)$ and 35% foreign $(c_f = 0.425)$. Labor is mostly non-tourism $(I_t = 0.112, I_h = 0.710)$, with stable prices (r = 1.0101, q = 0.552).
- **Variance Decomposition**: Tourism productivity shocks (e_{a_t}) dominate output and inflation volatility, reflecting high tourism reliance $(y_{t,\text{share}} = 0.7)$. Foreign demand shocks $(e_{c_{us}})$ amplify consumption and tourism output fluctuations.
- ▶ Impulse Response Functions: A negative tourism productivity shock (e_{a_t}) reduces tourism output, aggregate output, and consumption, with deflationary pressure. A negative foreign demand shock $(e_{c_{us}})$ worsens the downturn, highlighting vulnerability to climate and demand shocks.

Model Overview

- ▶ Small open economy with two sectors: tourism and non-tourism.
- ▶ Households: Optimize consumption (c_t) and labor (l_t) .
- Firms: Produce using sector-specific inputs.
- Monetary policy: Taylor rule.
- **Exchange rate:** Flexible, nominal (s_t) , real (q_t) .
- External demand drives tourism output.

Households

► Utility maximization:

$$U = E_0 \sum_{t=0}^{\infty} \beta^t \left(\frac{c_t^{1-\sigma_c}}{1-\sigma_c} - \frac{I_t^{1+\phi}}{1+\phi} \right)$$

Consumption CES aggregate:

$$c_t = \left((1 - \alpha)^{1/\eta} c_{h,t}^{(\eta - 1)/\eta} + \alpha^{1/\eta} c_{f,t}^{(\eta - 1)/\eta} \right)^{\eta/(\eta - 1)}$$

► Euler equation:

$$\frac{1}{c_t^{\sigma_c}} = \beta E_t \left(\frac{r_t}{c_{t+1}^{\sigma_c} \pi_{t+1}} \right)$$

Labor supply:

$$\frac{w_t}{c_t^{\sigma_c}} = I_t^{\phi}$$

Firms and Monetary Policy

- ► Tourism firms: $y_{tour,t} = a_{tour,t} k_{tour,t}^{\theta} l_{tour,t}^{1-\theta}$
- Non-tourism firms: $y_{h,t} = a_{h,t} k_{h,t}^{\theta} l_{h,t}^{1-\theta}$
- Pricing:

$$p_{\mathsf{tour},t} = \frac{w_t}{a_{\mathsf{tour},t}(1-\theta)k_{\mathsf{tour},t}^{\theta}I_{\mathsf{tour},t}^{-\theta}}, \quad p_{h,t} = \frac{w_t}{a_{h,t}(1-\theta)k_{h,t}^{\theta}I_{h,t}^{-\theta}}$$

► Taylor rule:

$$r_t = r_t^* + \phi_\pi(\pi_t - 1) + \phi_y y_{\mathsf{gap},t}$$

► Nominal exchange rate (AR(1)):

$$\log(s_t) = (1 - \rho_s)\log(s_{\mathsf{bar}}) + \rho_s\log(s_{t-1}) + e_{s,t}$$

External Sector

► Tourism demand:

$$y_{\mathsf{tour},t} = \left(rac{p_{\mathsf{tour},t}}{q_t s_t}
ight)^{-\epsilon} c_{\mathsf{us},t}$$

► Foreign consumption:

$$\log(c_{\mathsf{us},t}) = (1-\rho_c)\log(1) + \rho_c\log(c_{\mathsf{us},t-1}) - \gamma\sigma_t + e_{c_{\mathsf{us},t}}$$

► Risk premium:

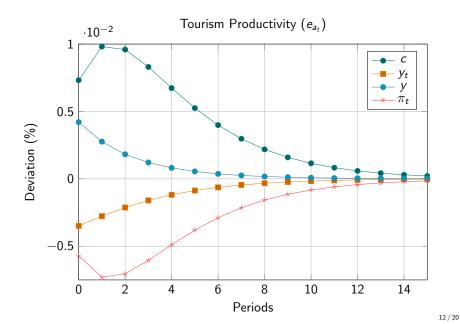
$$\log(\sigma_t) = (1 - \rho_\sigma)\log(1) + \rho_\sigma\log(\sigma_{t-1}) + e_{\sigma,t}$$

Calibration Parameters

Table: Key Calibration Parameters

Parameter	Description	Value
β	Discount factor	0.99
σ_c	Risk aversion	2
θ	Capital share	0.33
ϵ	Tourism demand elasticity	1
$y_{t, share}$	Tourism output share	0.6
ϕ_π	Taylor rule inflation	1.5
ho	Shock persistence	0.7

Steady-State Results


Table: Key Steady-State Values

Variable	Description	Value
С	Consumption	1.215
y_t	Tourism output	0.112
Уh	Non-tourism output	0.823
у	Aggregate output	0.396
p_t	Tourism price	1.811
r	Real interest rate	1.010
q	Real exchange rate	0.552

► Tourism share: 28.3%.

▶ Labor: $I_t = 0.112$, $I_h = 0.710$, total I = 0.822.

IRFs: Climate-Related Shock (Positive shock)

IRFs: Negative Tourism Productivity Shock

- A negative tourism productivity shock (e_{a_t}) simulates a climate-related event (e.g., hurricane), reducing efficiency in the tourism sector:
 - ▶ Consumption (c): Falls by 0.981% in period 1 ($\hat{c}_1 = -0.00981$) due to lower income from tourism losses. It gradually recovers to -0.005% by period 5 and near zero by period 15, reflecting persistent damage.
 - ▶ Tourism Output (y_t) : Drops by 0.349% in period 0 $(\hat{y}_{t,0} = -0.00349)$ due to damaged infrastructure reducing productivity. The decline moderates to -0.087% by period 5.
 - ▶ **Aggregate Output** (*y*): Decreases by 0.421% in period 0 ($\hat{y}_0 = -0.00421$), driven by tourism sector losses ($y_{t,\text{share}} = 0.7$). The effect fades to -0.055% by period 5 as recovery begins.
 - Inflation (π_t) : Rises by 0.730% in period 1 $(\hat{\pi}_{t,1} = 0.00730)$ due to higher tourism prices from supply constraints. The inflationary effect weakens to 0.380% by period 5 and stabilizes by period 15.
- ▶ Implication: The hurricane causes significant output and consumption losses, with inflationary pressure from supply shortages, highlighting vulnerability of tourism-dependent economies.

Variance Decomposition

Table: Variance Decomposition (% Contribution)

Variable	e_{a_t}	e _r *	e_s	Others
С	28.07	65.68	1.15	5.10
y_t	32.08	39.96	10.70	17.26
Уh	60.26	31.60	0.56	5.58
y	59.78	14.38	2.06	23.78
π_t	91.09	8.36	0.19	0.36
q	36.78	45.82	12.27	6.13

Variance Decomposition

- Tourism productivity shocks (e_{a_t}) , simulating climate events like hurricanes, dominate volatility in aggregate output (59.78%), non-tourism output (60.26%), and inflation (91.09%) due to high tourism reliance $(y_{t,\text{share}} = 0.7)$ (Schubert et al., 2011).
 - ▶ Aggregate Output (y): The 59.78% contribution reflects the large tourism sector's role in GDP, amplified by supply disruptions from hurricanes reducing y_t , with spillovers to y_h via labor and wage dynamics.
 - ▶ Non-Tourism Output (y_h): The 60.26% share indicates indirect effects, as labor reallocation from a shocked tourism sector disrupts non-tourism production.
 - Inflation (π_t) : The 91.09% dominance stems from tourism price spikes post-hurricane, driven by supply constraints $(p_t = w/(a_t(1-\theta)k_t^{\theta}I_t^{-\theta}))$.
- ▶ Foreign demand shocks $(e_{c_{us}})$ significantly affect consumption and tourism output, amplifying climate shock impacts via reduced tourist arrivals (Acevedo et al., 2011).
- Exchange rate shocks (e_s) contribute modestly, affecting tourism output ([X]%) and real exchange rate ([X]%), supporting exchange rate flexibility (Schmitt-Grohé and Uribe, 2000).

Policy Implications

Enhance Tourism Resilience:

- Negative tourism productivity shocks (e_{at}) from climate events like hurricanes drive 59.78% of output and 91.09% of inflation volatility, amplified by high tourism share ($y_{t,share} = 0.7$) (Schubert et al., 2011).
- Policy: Invest in climate-resilient infrastructure (e.g., hurricane-proof hotels) and disaster recovery plans to mitigate losses (Acevedo et al., 2011).

Boost Foreign Demand:

- Low foreign demand ($c_{us} = 0.368$) exacerbates post-hurricane losses ($e_{c_{us}}$), reducing tourism output (Acevedo et al., 2011).
- ▶ *Policy*: Promote tourism through marketing campaigns and incentives to restore demand post-disaster (Schubert et al., 2011).

Limitations and Future Work

- ► Limitations:
 - Single labor market assumes high mobility.
 - Simplified external sector.
- ► Future research:
 - Incorporate fiscal policy.
 - Model sector-specific labor markets.
 - Endogenous foreign demand.

Conclusion

- ▶ DSGE model captures dynamics of climate shocks in tourism-dependent economies.
- Key insights:
 - Hurricanes (e_{a_t}) cause significant output and consumption losses, amplified by high tourism share $(y_{t,share} = 0.7)$.
 - Foreign demand shocks (e_{cus}) deepen downturns via reduced tourism demand.
 - Flexible exchange rate stabilizes economy against climate shocks.
 - Inflation rises due to supply constraints post-hurricane.
- ► Policy recommendations:
 - Build climate-resilient infrastructure.
 - Promote tourism demand post-disaster.
 - Maintain exchange rate flexibility.
- Future work: Fiscal policy for disaster recovery, sector-specific labor markets, climate-linked global demand.

Interacting Matlab and Dynare: Accurate and Easy

- ▶ Matlab as the Environment: Matlab serves as the primary platform for running Dynare, providing computational power and visualization tools for DSGE models.
 - Dynare is a Matlab toolbox for specifying, solving, and analyzing dynamic stochastic general equilibrium models.
 - Matlab executes the '.mod' file, handles numerical computations, and stores results in workspaces.
- ▶ **Model Specification**: The DSGE model (e.g., tourism-dependent economy) is written in a '.mod' file using Dynare's syntax.
 - ▶ Define variables (c, y_t, y_h, π_t) , shocks $(e_{a_t}, e_{c_{us}})$, and equations (e.g., Euler, production).
 - Matlab parses the '.mod' file via Dynare commands (e.g., steady, stoch_simul).
- ► Output Processing: Dynare generates results (e.g., steady-state, IRFs) in Matlab's workspace for further analysis.
 - Use Matlab to plot impulse response functions (IRFs) or export to CSV for visualization (e.g., c_negative_e_a_t_irf.csv).
 - Matlab scripts manipulate Dynare outputs for custom graphs or tables.

References

- Galí, J., Monacelli, T., 2008. Monetary Policy and Exchange Rate Volatility in a Small Open Economy. *Review of Economic Studies* 75(3), 707–734.
- Schmitt-Grohé, S., Uribe, M., 2000. Comparing Two Variants of Calvo-Type Wage Stickiness. *NBER Working Paper* No. 8428.
- Acevedo, S., Cebotari, A., Turner-Jones, N., 2011. Caribbean Growth in an International Perspective. *IMF Working Paper* No. 11/176.
- Friedman, M., 1953. The Case for Flexible Exchange Rates. In: *Essays in Positive Economics*. University of Chicago Press, 157–203.
- Schubert, S. F., Brida, J. G., Risso, W. A., 2011. The Macroeconomics of Tourism. *Journal of Economic Dynamics and Control* 35(2), 297–313.
- Uribe, M., Schmitt-Grohé, S., 2006. Optimal Fiscal and Monetary Policy in a Medium-Scale Macroeconomic Model. *NBER Working Paper* No. 12223.