MathWorks **AUTOMOTIVE CONFERENCE 2024** Europe

Design and Analyze a Battery Electric Vehicle with Thermal Management

Lorenzo Nicoletti, MathWorks

What Will You Learn Today?

Design and Analyze a BEV with Thermal Management

Why Do We Need a Virtual Vehicle?

How to Improve BEVs Range? An Overview

Energy Losses

How to Improve BEVs Range?

The Thermal Management Adds an Additional Degree of Complexity

Challenge:

The thermal management influences efficiency and safety of the powertrain The thermal management is impacted by every subsystem in the vehicle

Solving this multidisciplinary problem requires a virtual vehicle that models all relevant subsystems and their interdependencies

Why Do We Need a Virtual Vehicle?

Building a Virtual Vehicle Model to Assess Range

Using Simscape[™]

The cabin components are modeled with the Moist Air domain of Simscape Fluids™

Using Simscape[™]

Subsystems

- Battery, Charger
- Powertrain
- Driveline
- Cabin HVAC
- Refrigerant Loop
- Motor Loop
- Battery Loop

The refrigerant loop is modeled with the Two-Phase Fluid domain of Simscape Fluids™

Using Simscape[™]

The battery coolant loop is modeled with the Thermal Liquid domain of Simscape Fluids™

Building a Virtual Vehicle Model to Assess Range

Simulating a Drive Cycle with the Virtual Vehicle Model

Analyze Losses over Drive and Charge Scenario

Considering Powertrain, Driveline, and Thermal Management Losses

Analyze Losses of Individual Subsystems

Represent results with bar and pie charts

Source: S. Miller and L. Nicoletti, "A Holistic Approach for Designing a Battery Electric Vehicle Thermal Management System", ELIV, Bonn, 2023

Analyze Losses of Individual Subsystems

Represent results with Sankey charts

Source: S. Miller and L. Nicoletti, "A Holistic Approach for Designing a Battery Electric Vehicle Thermal Management System", ELIV, Bonn, 2023

Sensitivity Analysis: Energy Flow for One and Five Passengers

The percentages refer to the sum of charged and initial battery energy

Source: S. Miller and L. Nicoletti, "A Holistic Approach for Designing a Battery Electric Vehicle Thermal Management System", ELIV, Bonn, 2023

Sensitivity Analysis: Energy Flow for One and Five Passengers Main results

- Increasing the passengers from one to five raises consumption by 8.3 kWh
- On average each additional passenger:
 - Decreases the maximum range by 4 km
 - Increases required charged energy by 1.9 kWh
- More sensitivity analyses are documented in:
 - S. Miller and L. Nicoletti, "A Holistic Approach for Designing a Battery Electric Vehicle Thermal Management System", Electronics In Vehicles (ELIV) Conference, Bonn, 2023

Simulating a Drive Cycle with the Virtual Vehicle Model

Summary and Outlook

Summary and Outlook

Where to go next?

- Key Takeaway:
 - You can use Simscape to build a virtual vehicle model with thermal management
 - You can use the virtual vehicle to gain insights on range, consumption, and costs
 - You can easily extend and detail the virtual vehicle
- The virtual vehicle is available on <u>GitHub</u> (in 24a and 23b)
- Use <u>Simulink[®] Design Optimization[™]</u> for more complex sensitivity analyses
- Use <u>Optimization Toolbox™</u> to optimize your design
- Deploy the model in the cloud to accelerate your optimization studies

MathWorks **AUTOMOTIVE CONFERENCE 2024** Europe

Thank you

© 2024 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.