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Challenges in conventional Proposed methodology
methods for estimating SOC &

SOH | In the hybrid approach,

" Measurement flotse SOC's generalization and

" Integration Err nonlinearity approximation
capability are significantly
enhanced

= |nitial SOC calculation error
= Peukert’s Coefficient

* Incorrect Battery Parameterization of battery models

= Best fit tuning challenge

K P I -I SoC : State of Charge | SoH : State of Health



Machine learning based Hybrid Approach
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Workflow of proposed hybrid SOC estimation approach

Building, training & tuning Neural Network
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Training Process for a Neural Network

Training Stages

A\ Neural Netwark Training (nntraintool) — Oa *

Neural Network
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Algorithms

Data Division:

Random (dividerand)

Training: Levenberg-Marquardt (trainlm)
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Arrive at training inputs

Dataset Tuned Battery Plant
Model

Kalman Filter Co-efficients

tuned for best case accuracy on
a particular dataset
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Arrive at training inputs
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Final Model design

Neural Network Simulink Systems replace the

Kalman Filter of previous design
SocEstimator
D

Battery Plant Model
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Neural Network design
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Model performance

Number of error occurrences (log scale)
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Error = abs(Vpred - Vmeas)
Error_Occurence = focv(error) > 5%
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Model performance

Number of error occurrences (log scale)
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Summary

» Application of AI/ML along with domain has consistently yielded the desired estimate of
cell SOC at acceptable accuracy levels.

 Conventional methods were less complex and accurate, the increase in computational
power and usage of powerful toolchain from MathWorks has encouraged to explore the
complex techniques to enhance the algorithms

« The MathWorks environment provided the required computational and design toolboxes to
seamlessly enable this workflow of designing and training the neural network, simulating in
a closed-loop environment, and generating production-grade embedded code for
deployment on hardware.

» Further, this study was mainly for mild hybrid applications; for fully battery electrical, the
computational aspect becomes more challenging. Further, these algorithms of SOC and
SOH can be extended to integrate with a vehicle control unit and thereby improve the
electrical range and achieve better fuel economy. And all this development is possible in a
shorter time due to powerful simulation toolchains from Mathworks.
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