[image:]
[bookmark: _Toc368901646][bookmark: _Toc377113716][bookmark: _GoBack]Appendix 4: Raspberry Pi Driving Hardware using GPIO Pins
Project 4: [bookmark: _Toc377113717]Using Raspberry Pi General Purpose IO pins
P4.1 [bookmark: _Toc377113718]Optional: Using General Purpose IO Pins via Simulink Blocks

Objective: To understand how to interface with hardware using GPIO Pins
Task/ Challenge: Build a Simulink application which turns an output LED on as soon as it detects a green object. Take inputs from a push button to test the LED
Steps/ Approach:
1. It is possible to drive General Purpose IO pins on the Raspberry Pi using Simulink Blocks. Starting from the ObjectMarker.slx example, we can drive a LED every time we detect a green object by building the model as below
[image:]
2. Use the following circuits to drive the LED and as an input of the Raspberry Pi
[image:] [image:]
These simple circuits are realised on the breadboards. Using the above model you can see how the input can turn the LED on as well as detecting the green object.
3. Build and run the application and check that the LED does come on on detecting a green object or by pushing the push button.

P4.2 [bookmark: _Toc377113719]Optional: Calling C Functions from Simulink
Objective: To demonstrate how to include calls to standard C libraries

Task/ Challenge: To run and examine a Simulink model which stores a picture for examination with MATLAB for further analysis

Steps/ Approach:
1. As a second example, load now the model ObjectDetectionPosMarkStore.slx. The store block captures the RGB signals every time the push button is pressed. It writes them into an ASCII files imgX.dat where X is determined programmatically by the number of times the pushbutton is pressed.[image:]

The code calls “C” functions sprintf & fprintf

function fcn(r,g,b, counter)
%#codegen
% Save 320x240 colour image to a file
format = ['%d ', 0];
fname = coder.nullcopy(uint8(zeros(1, 32)));
coder.ceval('sprintf', coder.wref(fname), ['img%d.dat', 0], counter);
fd = coder.opaque('FILE *');
fd = coder.ceval('fopen', fname, ['w', 0]);
for i = 1:320
 for j = 1:240
 coder.ceval('fprintf', fd, format, r(i, j));
 end
end
for i = 1:320
 for j = 1:240
 coder.ceval('fprintf', fd, format, g(i, j));
 end
end
for i = 1:320
 for j = 1:240
 coder.ceval('fprintf', fd, format, b(i, j));
 end[image:]

end
coder.ceval('fclose', fd);

The file can then be retrieved by MATLAB with the following commands
h = raspberrypi
h.connect
h.getFile(['/home', '/', h.UserName, '/img0.dat'])
img = load('img0.dat');
x = uint8(reshape(img,240,320,3));
image(x)
shg

For additional features of using the raspberrypi object to issue linux commands and functions please study the documentation.

P4.3 [bookmark: _Toc377113720]Optional: Calling C Function Libraries from Simulink
Objective: To demonstrate how to include calls to user written C functions and libraries
Task/ Challenge: To run and examine a Simulink model turning an LED on or off using both the block supplied in Simulink Library and calling functions from wiring Pi C library supplied with Raspberry Pi.
Steps/ Approach:
1. It is also possible to include call “C” functions which drive various outputs. In the following example we will use the Simulink S Function Builder alongside the wiring Pi “C” library which allows a different way of addressing the IO using user-defined libraries and drivers.
2. Details of how to include “C” functions with hardware support for Simulink can be found in the a document entitled “Device Drivers” http://www.mathworks.co.uk/matlabcentral/fileexchange/39354-device-drivers written for support for arduino but is equally applicable for Raspberry Pi.
3. In order to check how this is done copy the folder “home” and file “Digital_Out_SFunction_Comparison.slx” from the “Models\Appendix4” directory to the “Working” directory. The home folder contains the “C” include and source files as defined in wiringPi library.
4. Open Digital_Out_SFunction_Comparison.slx. Double click on User Defined S-Function. Double click on sfcn_Digital_Out to open up the dialogue box. Click on the Build button on the top right hand side. This will create the appropriate files which will be compiled and called from Simulink to turn the Digital Output on using calls to user-defined “C” functions.
[image:] [image:]

5. The Block with S-Function Builder is given by:
[image:]

[image:]

[image:]
[image:]

[image:]

6. Examine the various tabs of the S Function Builder and note how the C functions are called. Build the S Function and run the application in External Mode. Note the way you can switch and use this block in building your system.

This demonstrates a second way which external C functions can be incorporated into Simulink. WiringPi functions can therefore be used simply to integrate new IO and drivers with Raspberry Pi blocks in Simulink.

Page 1 of 7

Page 7 of 7

image1.png

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.jpeg

