ENSC 180 – Introduction to Engineering Analysis Tools
Assignment #7: MEX files

Background
Functions written in C/C++ can easily be called from MATLAB as if they were MATLAB functions by interfacing through a MEX file. This MEX file is named after the function we wish to implement. It contains the gateway subroutine that passes all the inputs from MATLAB into our C/C++ programming environment. Special built-in functions from the MEX function library are used inside the gateway subroutine to perform this conversion. After this is done, we are free to use these inputs in any C/C++ code. Once our C/C++ subroutines are finished, we send their outputs back to the MATLAB workspace by converting the C/C++ data into MATLAB data through our gateway subroutine. Just as before, this involves using the built-in functions from the MEX function library. The ability to interface C/C++ with MATLAB allows us to overcome many of MATLAB’s shortcomings regarding non-vectorized code.
Objectives
The task given in this assignment is fairly trivial and does not benefit much from implementation in C/C++ since it can be performed very efficiently with MATLAB vector operations. Nonetheless, the goal here is simply to provide a practical walkthrough on how to interface MATLAB with C++ through MEX. Upon finishing, you will have a working template for integrating C/C++ with MATLAB that is suitable for most situations.
Procedure
You are given a MATLAB script “demoThreshold_slow.m”, which reads an RGB color image, converts it to grayscale, and then applies a threshold to the grayscale image. You should run this script and observe the outputs of each of the three steps above. The thresholding operation in the third step is simply:

where is the input image, is the thresholded image, and is the threshold. The function that performs this step is “applyThreshold_slow” which is purposely written in an inefficient manner (in the context of MATLAB) to make it easier to port to C++.
We wish to design a function:
imgBinary = applyThreshold_mex(img, T);

with inputs:
· img – The input grayscale image. This is a matrix of size M-by-N, where M is the height of the image and N is the width.
· T – The threshold value. It should be an integer between 0 and 255.
In order to do this, we need to create a .cpp file called “applyThreshold_mex.cpp”. This file will serve as a wrapper. It will pass on the inputs img and T onto our C++ code when we perform the function call shown above in our MATLAB script.

From here on keep in mind that C++ indexes arrays starting with 0, not 1 and proceed as follows:

1. Create folder called “mex” in the directory containing “demoThreshold_slow.m” and “applyThreshold_slow”.

2. Inside the folder “mex”, create a blank .cpp file called “applyThreshold_mex.cpp”. Inside this file, include the following,

#include "mex.h"

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
{

}

3. The inputs to our function can be fetched using the array of pointers prhs[]. To be specific, prhs[0] is a pointer to the matrix img and prhs[1] is a pointer to the scalar T. We will begin mexFunction by fetching the variable T as follows:

double T = mxGetScalar(prhs[1]);
Since mxGetScalar returns a double, our variable T must also be defined as a double.

4. Fetching the matrix img is a little bit more involved. First, we need to find its dimensions. Using the function mxGetDimensions we can obtain a pointer to an array of dimensions. A quick glance at the documentation of mxGetDimensions shows that its output is a pointer of type const int. Thus, we can gain access to this array of dimensions with:
const int *pSize;
pSize = mxGetDimensions(prhs[0]);

The dimensions in this array are organized in the same order as MATLAB, i.e., pSize[0] is the number of rows, pSize[1] is the number of columns, pSize[2] is the number of pages, etc. Since our input image is simply a 2D matrix, we only have pSize[0], which is the height of our image, and pSize[1], which is the width. Store pSize[0] in a variable IMG_H and pSize[1] in a variable IMG_W.
5. Initialize a dynamic 2D array double **img with the dimensions from the previous step. We will store the input image in this array.
6. The function mxGetPr will give a pointer to the input image. This function only works on arrays of type double, so use it as shown below:
double *pData;
pData = mxGetPr(prhs[0]);

7. Next, we must transfer the data pointed to by pData into the array img. This is to be done using a nested for-loop:
for
{
	for	
{
		img[][] = pData[];
	}
}

Note that pData is 1-dimensional. The pixel in the image located at (row, col) would be pointed to by pData at the location corresponding to the linear index of (row, col). For example,
	j
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19

	pData[j]
	a
	b
	c
	d
	e
	f
	g
	h
	i
	j
	k
	l
	m
	n
	o
	p
	q
	r
	s
	t

would correspond to the matrix
	a
	e
	i
	m
	q

	b
	f
	j
	n
	r

	c
	g
	k
	o
	s

	d
	h
	l
	p
	t

8. Just like in Step 5, Initialize a dynamic 2D array double **imgBinary with the dimensions IMG_H and IMG_W. We will store the output image to this array.

9. At this point, create a new file “threshold.h”. Inside it, place the following code

using namespace std;

void threshold(double **imgBinary, double **img, double T, const int IMG_H, const int IMG_W);

Although this seems redundant for such a simple implementation, more complex projects benefit from this sort of organization.

10. The function that performs the thresholding procedure will be defined in a separate file “threshold.cpp”. Create a blank .cpp file with this title and place the following in this blank file:

#include "threshold.h"
using namespace std;

void threshold(double **imgBinary, double **img, double T, const int IMG_H, const int IMG_W)
{

}

11. Implement the thresholding procedure using a nested for-loop exactly as shown in “applyThreshold_slow.m”.

12. Returning back to our wrapper file “applyThreshold_mex.cpp”, add #include "threshold.h" to the top, before mexFunction begins.

13. Continuing on after the code from Step 8, make a call to the threshold function with the necessary inputs.

14. To output the thresholded image, we need to allocate space for an array of real values using the mxCreateDoubleMatrix function:

plhs[0] = mxCreateDoubleMatrix(IMG_H, IMG_W, mxREAL);
double *outputMatrix = mxGetPr(plhs[0]);

(Note: The thresholded image is binary and hence can be represented as a Boolean array. However, to avoid issues related to type-casting and to simplify things, we mostly just use the double data type in this assignment). Recall that plhs[0] is a pointer to the first output. In the above code, outputMatrix points to the first element of the array we created with mxCreateDoubleMatrix.

15. Finally, we need to transfer the contents of imgBinary to the locations pointed at by outputMatrix. This is essentially the reverse of Step 7:

for
{
	for	
{
		outputMatrix[][] = imgBinary[];
	}
}

16. Save all .cpp and .h files. In order to compile these files, make sure you have a default compiler selected by using the command mex -setup in the MATLAB terminal. The command to compile our files (from the directory in which “demoThreshold_slow.m” is located) is

mex '.\mex\applyThreshold_mex.cpp' '.\mex\threshold.cpp'

You may use the file “threshold_compile.m” to do this for you. Simply run this file in MATLAB. Remember that every time a change is made in the C++ code, it has to be recompiled in MATLAB, so a file like this is convenient to have.

17. Create a new MATLAB script called “demoThreshold_mex.m” and copy the contents of “demoThreshold_slow.m” directly into it. Then, replace the following line

imgBinary = applyThreshold_slow(imgGray, T);

with our newly created MEX function

imgBinary = applyThreshold_mex(imgGray, T);

Ensure that you obtain the same results with the MEX function as you do with the original MATLAB implementation.
