Nonnegative/sparse matrix factorization and Tensor decomposition.

The goal of Blind Source Separation (BSS) methods like Independent Component Analysis (ICA, CHAPTER 10, Special Topic) is to estimate the physical sources of a mixing system. Most BSS models can be expressed algebraically as some form of factorization of a data matrix  (with each column representing a different observation of a random vector ) into the factor matrices   and  :



where the symbol  denotes the outer product,  is a scaling matrix (possibly I), the columns of B are the unknown source signals (factors or latent variables), the columns of A are the associated mixing vectors (or factor loadings), and E is noise due to unmodelled part of the data or model error.
[image: ]
It is important to understand that without some a priori knowledge, or without specific constraints, it is not possible to estimate uniquely the original source signals. Fortunately, many real-world data are nonnegative and the corresponding hidden components have a physical meaning only when nonnegative. In practice, both nonnegative matrix factorization, NMF, and sparse component analysis, SCA, of data are often necessary for the underlying latent components to have a physical interpretation.

In standard NMF we only assume nonnegativity of the factor matrices A and B, and unlike ICA, we do not assume that the sources are independent. In order to estimate factor matrices A and B we need to quantify a cost function, the distance between the data matrix  and the NMF model . The simplest distance measure is based on the Frobenius norm:



which is also referred to as the squared Euclidean distance. Alternating minimization of such a cost leads to the Alternating Least Squares (ALS) algorithm: in this method, after an initial random initialization of , a least squares solution for with  fixed and for with  fixed is carried out iteratively until the cost function reaches a minimum, or the difference in cost function between consecutive iterations becomes smaller than a given tolerance value, or a maximum number of iterations is reached. In each iteration, the negative elements of and  and the off-diagonal elements of  are replaced with 0 or with some very small number:
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A simple modification of this algorithm allows also the imposition of a sparseness constraint (with or without nonnegativity) on the A matrix. In this case at each iteration we set to 0 a given fraction of the smallest elements of A. This way, Nonnegative matrix factorization (NNMF) turns into Sparse component analysis (SCA). The algorithm is implemented in the functions nnmf_sca:

function [ A,D,Bt,X_hat,niter,sse,sse_diff,tot_sparseness,col_sparseness ] = ...
    nnmf_sca(X,k,dchoice,balance,achoice,asparse,schoice,maxiter)
% Nonnegative matrix factorization and/or Sparse component analysis.
%
% X is an m x n data matrix.
% k is the number of factors requested.
% Two choices for the D matrix:
% dchoice = diag|ident	
% Two choices for balancing the columns of A and the elements of the D
% diagonal:
% balance = balance|nobalance
% Three  choices for the A matrix:
% achoice = nneg|sparse|both
% asparse is the level of sparseness for the A matrix (e.g. 0.2 = 20% of
% zero elements in A)
% Two choices for sparseness, random or by columns:
% schoice = random|bycols
% maxiter is the maximum number of iterations allowed.
 
% Defaults:
if nargin < 8 maxiter = 500; end
if nargin < 7 schoice = 'random'; end
if nargin < 6 asparse = 0.2; end
if nargin < 5 achoice = 'nneg'; end
if nargin < 4 balance = 'nobalance'; end
if nargin < 3 dchoice = 'ident'; end

[i,~] = size(X);
  
% Sparseness: set the number of zero elements per column.
nsparse = round(asparse*i);
 
% Initialize D matrix
D = eye(k);
                
% Initialize the A matrix and normalize the columns.
A = rand(i,k);
for ncols = 1:k
    A(:,ncols) = A(:,ncols)/norm(A(:,ncols));
end
 
sse_diff = 1;
sse = 1;
niter = 0;
small0 = eps^(1/3);
small = 0;
 
% Iteration
while sse_diff > small0
if niter > maxiter
    break
end    
niter = niter + 1;
 
% Calculate Bt and implement nonnegativity:
% Bt = ((A*D)'*A*D)\(A*D)'*X
% Same as:
Bt = (A*D)\X;
neg_ind = Bt<=0;
Bt(neg_ind) = small;
 
% Normalize the rows. 
for nrows = 1:k
    Bt(nrows,:) = Bt(nrows,:)/norm(Bt(nrows,:)); 
end
 
% Calculate D:
switch dchoice
    case 'diag'
    Ap = pinv(A);
    % Dt =(Bt*B)\(Bt*X'*Ap')
    % Dt = B\X'*Ap';
    % Same as:
    D = Ap*(X/Bt);
    D = diag(diag(D));
 
    case 'ident'
    % nothing to do here
end        
 
% Calculate A:
% At = ((B*Dt)'*B*D')\(B*Dt)'*X'
% At = (B*D)\X';
% Same as:
A = X/(D*Bt);
 
switch achoice
    case 'nneg'     % Implement nonnegativity:
    neg_ind = A<=0;
    A(neg_ind) = small;
 
    case 'sparse'   % Implement sparseness:
    
        switch schoice
            case 'random'
                [A_sorted] = sort(abs(A(:)),'ascend');
                cutoff = A_sorted(nsparse*k);
                sparse_ind = abs(A)<=cutoff;
                A(sparse_ind) = small;
            case 'bycols'
                for kcols = 1:k
                    [A_sorted] = sort(abs(A(:,kcols)),'ascend');
                    cutoff = A_sorted(nsparse);
                    sparse_ind = abs(A(:,kcols))<=cutoff;
                    A(sparse_ind,kcols) = small;
                end
        end
 
    case 'both'     % Implement nonnegativity and sparseness:
    neg_ind = A<=0;
    A(neg_ind) = small;
    
        switch schoice
            case 'random'
                [A_sorted] = sort(abs(A(:)),'ascend');
                cutoff = A_sorted(nsparse*k);
                sparse_ind = abs(A)<=cutoff;
                A(sparse_ind) = small;
            case 'bycols'
                for kcols = 1:k
                    [A_sorted] = sort(abs(A(:,kcols)),'ascend');
                    cutoff = A_sorted(nsparse);
                    sparse_ind = abs(A(:,kcols))<=cutoff;
                    A(sparse_ind,kcols) = small;
                end
        end
end
 
% Normalize A: it provides a more balanced D for the option 'diag' at the 
% expense of a slightly poorer residual. Do not use with the option
% 'ident'.
switch balance
    case 'balance'
    for ncols = 1:k
        A(:,ncols) = A(:,ncols)/norm(A(:,ncols));
    end
    case 'nobalance'
end
 
% Calculate residual:
X_hat = A*D*Bt;
R = X - X_hat;
sse_old = sse;
sse = R(:)'*R(:); 
sse_diff = abs(sse_old - sse);   
end
 
% Calculate sparseness: 
% 1. total:
tot_sparseness = sum(A(:)==small)/(i*k);
% 2. by columns:
col_sparseness = zeros(1,k);
for kcols = 1:k
    col_sparseness(kcols) = sum(A(:,kcols)==small)/i;
end 
end
 
The nonnegative factorization algorithm can be conveniently used to obtain a lower rank approximation of the original matrix  as , with a diagonal  matrix, or constraining . The following are some examples of the possible uses of nnmf_sca:

X = randi(20,50,10)
openvar A, openvar D, openvar Bt

NNMF 
[ A,D,Bt,X_hat,niter,sse,sse_diff,sparseness ] = nnmf_sca(X,5); 
[ A,D,Bt,X_hat,niter,sse,sse_diff,sparseness ] = nnmf_sca(X,5,'diag','nobalance'); 
[ A,D,Bt,X_hat,niter,sse,sse_diff,sparseness ] = nnmf_sca(X,5,'diag','balance');

SCA
[ A,D,Bt,X_hat,niter,sse,sse_diff,sparseness ] = nnmf_sca(X,5,'ident','nobalance','sparse');
[ A,D,Bt,X_hat,niter,sse,sse_diff,tot_sparseness,col_sparseness ] = ...
    nnmf_sca(X,5,'ident','nobalance','sparse',0.3);
[ A,D,Bt,X_hat,niter,sse,sse_diff,tot_sparseness,col_sparseness ] = ...
    nnmf_sca(X,5,'ident','nobalance','sparse',0.3,'bycols');
 
NNMF + SCA
[ A,D,Bt,X_hat,niter,sse,sse_diff,tot_sparseness,col_sparseness ] = ...
    nnmf_sca(X,5,'ident','nobalance','both',0.3,'bycols');
 [ A,D,Bt,X_hat,niter,sse,sse_diff,tot_sparseness,col_sparseness ] = ...
    nnmf_sca(X,5,'diag','balance','both',0.3,'random');


Tensor decomposition.
The approach used for nonnegative matrix factorization can be extended to the decomposition of multi-way arrays, or tensors (represented with a capital, bold, and underlined letter; i.e., A).

Basic MATLAB has limited functionalities to operate on tensors; however, there are several MATLAB Toolboxes that extend these functionalities. Some of the most popular ones are the Tensor Toolbox (http://www.sandia.gov/~tgkolda/TensorToolbox/index-2.6.html) from Sandia National Laboratory, the N-way Toolbox (http://www.models.life.ku.dk/nwaytoolbox), the Tensorlab Toolbox (http://www.tensorlab.net/). We will use the Tensorlab and the corresponding Sandia Tensor Toolbox syntax in the following discussion of tensor methods. 


Tensor, matrix, vector, scalar

Matrix  with column vectors 

Fiber of tensor 

Matrix slice of tensor 

Tensor slice of 


A tensor can be thought of as a multi-index numerical array. The order of a tensor is the number of its modes or dimensions. Then, a 1 x 1 scalar a is a tensor of order 0, an m x 1 vector a is a tensor of order 1, and an m x n matrix A a tensor of order 2. 

Subtensors are parts of the original data tensor, created when only a fixed subset of indices is used. Vector subtensors are called fibers, defined by fixing every index but one, matrix subtensors are called matrix slices, obtained by fixing all but two indices, tensor-valued subtensors are called tensor slices, obtained by fixing only some indices:

A dense (or full) tensor is simply a MATLAB array:
T = randn(10,20,30);
S = randn(10,20,30);
V = T + S; 
W = T.*S; 

An incomplete tensor is a dataset in which some (or most) of the entries are unknown. An incomplete tensor is efficiently represented in Tensorlab by a structure that contains the necessary information. The efficient representation of an incomplete tensor of which the unknown entries are padded with NaN can be obtained by using the format command fmt:
T = NaN(9,9,9);
T(1,2,3) = -1; 
T(4,5,6) = -2; 
T(7,8,9) = -3;
Tf = fmt(T);
Tf = ful(T);
 
Ts = tensor(rand(9,9,9)	% Sandia
Ts = tensor(Tf)		% Sandia

A sparse tensor is a dataset in which most of the entries are zero, e.g., a large diagonal matrix. 
T = zeros (5, 5, 5);
T(1:31:end ) = 1 ;
Ts = sptensor(T); 	% Sandia	
T = fmt (T);		% Tensorlab


Basic Tensor Operations.

Unfolding (matricization) and folding (tensorization). A dense tensor T can be flattened or unfolded into a matrix with the sizes of each dimension combined to give the size of rows and columns. Here we generate a small tensor with element values equal to the element indices:   

T = zeros(3,3,3,3);
for i = 1:3
    for j = 1:3
        for k = 1:3
            for l = 1:3
                T(i,j,k,l) = l+10*k+100*j+1000*i;
            end
        end
    end
end
T = fmt(T);		% Tensorlab
Ts = tensor(T);	% Sandia  

This approach allows us to see exactly how the tensor is unfolded:

M = tens2mat(T,[1 2],[3 4]); 	% Tensorlab
Ms = tenmat(Ts,[1 3],[4 2]);	% Sandia  


	1111
	1121
	1131
	1112
	1122
	1132
	1113
	1123
	1133

	2111
	2121
	2131
	2112
	2122
	2132
	2113
	2123
	2133

	3111
	3121
	3131
	3112
	3122
	3132
	3113
	3123
	3133

	1211
	1221
	1231
	1212
	1222
	1232
	1213
	1223
	1233

	2211
	2221
	2231
	2212
	2222
	2232
	2213
	2223
	2233

	3211
	3221
	3231
	3212
	3222
	3232
	3213
	3223
	3233

	1311
	1321
	1331
	1312
	1322
	1332
	1313
	1323
	1333

	2311
	2321
	2331
	2312
	2322
	2332
	2313
	2323
	2333

	3311
	3321
	3331
	3312
	3322
	3332
	3313
	3323
	3333



However, the most common use is to matricize a tensor by placing its mode-n vectors as columns in a matrix, a procedure also called mode-n matricization.  For a fixed index n {1, 2, ...,N} , the mode-n  matricization of an Nth-order tensor, , is defined as the “short” and “wide” matrix:



M1 = tens2mat(T,1); M1 = tens2mat(T,1,[2 3 4]);

	1111
	1211
	1311
	1121
	1221
	1321
	1131
	1231
	1331
	1112
	1212
	1312
	1122
	1222
	1322
	1132
	1232
	1332
	1113
	1213
	1313
	1123
	1223
	1323
	1133
	1233
	1333

	2111
	2211
	2311
	2121
	2221
	2321
	2131
	2231
	2331
	2112
	2212
	2312
	2122
	2222
	2322
	2132
	2232
	2332
	2113
	2213
	2313
	2123
	2223
	2323
	2133
	2233
	2333

	3111
	3211
	3311
	3121
	3221
	3321
	3131
	3231
	3331
	3112
	3212
	3312
	3122
	3222
	3322
	3132
	3232
	3332
	3113
	3213
	3313
	3123
	3223
	3323
	3133
	3233
	3333



M2 = tens2mat(T,2); M2 = tens2mat(T,2,[1 3 4]);

	1111
	2111
	3111
	1121
	2121
	3121
	1131
	2131
	3131
	1112
	2112
	3112
	1122
	2122
	3122
	1132
	2132
	3132
	1113
	2113
	3113
	1123
	2123
	3123
	1133
	2133
	3133

	1211
	2211
	3211
	1221
	2221
	3221
	1231
	2231
	3231
	1212
	2212
	3212
	1222
	2222
	3222
	1232
	2232
	3232
	1213
	2213
	3213
	1223
	2223
	3223
	1233
	2233
	3233

	1311
	2311
	3311
	1321
	2321
	3321
	1331
	2331
	3331
	1312
	2312
	3312
	1322
	2322
	3322
	1332
	2332
	3332
	1313
	2313
	3313
	1323
	2323
	3323
	1333
	2333
	3333



M3 = tens2mat(T,3); M3 = tens2mat(T,3,[1 2 4]);

	1111
	2111
	3111
	1211
	2211
	3211
	1311
	2311
	3311
	1112
	2112
	3112
	1212
	2212
	3212
	1312
	2312
	3312
	1113
	2113
	3113
	1213
	2213
	3213
	1313
	2313
	3313

	1121
	2121
	3121
	1221
	2221
	3221
	1321
	2321
	3321
	1122
	2122
	3122
	1222
	2222
	3222
	1322
	2322
	3322
	1123
	2123
	3123
	1223
	2223
	3223
	1323
	2323
	3323

	1131
	2131
	3131
	1231
	2231
	3231
	1331
	2331
	3331
	1132
	2132
	3132
	1232
	2232
	3232
	1332
	2332
	3332
	1133
	2133
	3133
	1233
	2233
	3233
	1333
	2333
	3333




M4 = tens2mat(T,4); M4 = tens2mat(T,4,[1 2 3 ]);

	1111
	2111
	3111
	1211
	2211
	3211
	1311
	2311
	3311
	1121
	2121
	3121
	1221
	2221
	3221
	1321
	2321
	3321
	1131
	2131
	3131
	1231
	2231
	3231
	1331
	2331
	3331

	1112
	2112
	3112
	1212
	2212
	3212
	1312
	2312
	3312
	1122
	2122
	3122
	1222
	2222
	3222
	1322
	2322
	3322
	1132
	2132
	3132
	1232
	2232
	3232
	1332
	2332
	3332

	1113
	2113
	3113
	1213
	2213
	3213
	1313
	2313
	3313
	1123
	2123
	3123
	1223
	2223
	3223
	1323
	2323
	3323
	1133
	2133
	3133
	1233
	2233
	3233
	1333
	2333
	3333



Sandia Toolbox
M1s = tenmat(T,1); M1s = tenmat(T,1,[2 3 4]);
M2s = tenmat(T,2); M2s = tenmat(T,2,[1 3 4]);
M3s = tenmat(T,3); M3s = tenmat(T,3,[1 2 4]);
M4s = tenmat(T,4); M4s = tenmat(T,4,[1 2 3]);
 

[image: ]It is common practice to represent N-order tensors as nodes with each outgoing edge (line) emerging from a shape representing a mode (a way, dimension, indices). Using these symbols multiple tensor can be combined to form tensor networks.  

For example, we can use this type of diagram to represent both an Nth-order tensor, with the maximum size in each mode as I1, I2, … , IN, and running indices: i1 =  1, 2, . . . , I1 ; i2 =  1, 2, . . . , I2,  and iN =1, 2, . . . , IN:



and its short and wide mode-n matricization:



[image: ]
[image: ]Below we see a visual representation of the three possible mode-n matricizations of a 3rd order tensor: 

MATLAB own function reshape can also carry out the unfolding (and refolding) of a tensor:

[image: ]Same as M using MATLAB reshape:
M5 = reshape(T,9,9)
 
Same as M1 using MATLAB reshape:
M6 = reshape(T,3,27)

Of course, any matrix can ultimately be converted into a vector:
V4 = M4(:)

The tensorization of a vector or a matrix can be considered as a reverse process to the vectorization or matricization.

We can use the function mat2tens to transform a matricized tensor M back into its original size, provided we know the mode of its unfolding:

T3 = mat2tens(M3,size(T),3,[1 2 4]);
T3s = tensor(M3s) % Sandia


Tensor multiplication. The most common types of tensor multiplications are denoted by:  or n for the mode-n product,  for the outer product,  for the Kronecker product,  for the Khatri-Rao product, and  for the Hadamard (componentwise) product.

The fundamental rule for the elementwise calculation of a mode-n tensor x vector and tensor x matrix product for tensors of any order is the same summation convention used for the calculation of a simple dot product between two vectors or two matrices: if a subscript appears twice in a product, it expands automatically to a summation over all the dimensions, and disappears from the final product element. For example, the entries of the matrix product C = AB (with dimensions A, 5x3, and B, 3x2) are:



Tensor-Vector Multiplication










In Tensorlab we use the function tmprod. In a mode-n tensor-matrix or tensor-vector product, the tensor’s T mode-n fibers are premultiplied by a given matrix U or vector u. 
T = randn(3,5,7)
Tm = tens2mat(T,3)
size_tens = size(Tm)
u = randn(7,1)
S = tmprod(T,u',3)
size(S)

Ts = tensor(T);	% Sandia
Ss = ttv(T,u,3):	% Sandia

To show how this works, here we explicitly premultiply by u the mode-3 matricized T tensor and then reshape to obtain a matrix:
S = reshape(u'*Tm,3,5)
 
Here we premultiply by v the mode-2 matricized T tensor:
Tm = tens2mat(T,2)
size_tens = size(Tm)
v = randn(5,1)
S = tmprod(T,v',2)
size(S)

Here we calculate the product explicitly, and then reshape to obtain a tensor or a matrix by eliminating the singleton dimension:
S = reshape(v'*Tm,3,1,7)
S = reshape(v'*Tm,3,7)

Ss = ttv(Ts,v,2)	% Sandia
Ss = double(Ss)	% Sandia

Here two consecutive tensor x vector products (a multilinear product) produce a vector:









s = tmprod(T,{u',v'},[3 2])
S1 = tmprod(T,u',3)
s = tmprod(S1,v',2)
 
Tm = tens2mat(T,3)
S1 = reshape(u'*Tm,3,5)
s = reshape(v'*S1',3,1)
 
ss = ttv(Ts,{u,v},[3,2])	% Sandia
ss = double(ss)		% Sandia


The same principle applies also to tensor x matrix multiplication:







T = randn(3,5,7)
Tm = tens2mat(T,3)
size_tens = size(Tm)
U = randn(3,7)
S = tmprod(T,U,3)
size(S)
S = reshape((U*Tm)',3,5,3)

Ts = tensor(T)	% Sandia
Ss = ttm(Ts,U,3)	% Sandia

Tm = tens2mat(T,2)
size_tens = size(Tm)
V = randn(4,5)
S = tmprod(T,V,2)
size(S)
S = reshape((V*Tm)',3,4,7)

Ss = ttm(Ts,V,2)	% Sandia
 
Here two consecutive tensor x matrix products also produce a tensor:









S = tmprod(T,{U,V},[3 2])
S1 = tmprod(T,U,3); S2 = tmprod(S1,V,2)
 
Tm = tens2mat(T,3)
S1 = reshape((U*Tm)',3,5,3)
S1m = tens2mat(S1,2)
S2 = reshape((V*S1m)',3,4,3)

So, if T is 3x5x7, U is 3x7, and V is 4x5 we have:



In a similar way, we can define the mode- product of two tensors, or tensor contraction between:



with common modes  to yield the tensor:



of order (N + M - 2), with entries:


If it is not confusing a super- or sub-index m,n can be removed. For example, the product of the two tensors:



with common modes  can be written as:



of order (N + M - 2), with entries:


When referred to the multiplication of matrices and vectors this notation implies that:





Tensorlab implements only mode-n contraction between a tensor and a vector with the contract function. Sandia uses an option of the tensor x tensor product (ttt, see below). However, it is always possible to carry out the contraction between a tensor and a vector or between two tensors via matricization:

T x u:
T = randn(5,2,7)
u = {randn(7,1)}
 
Tm = tens2mat(T,3);
size_tens = size(Tm);
u_v = u{1};
S = tmprod(T,u_v',3)
size(S)
S = reshape(u_v'*Tm,5,2)

Tu_c = contract(T,u,3)	% Tensorlab
size(Tu_c)			% Tensorlab
 
Ts = tensor(T);		% Sandia
Us = tensor(u{1},7);		% Sandia
Ss = ttt(Ts,Us,3,1)		% Sandia
size(Ss)			% Sandia


T x U:
T = randn(5,2,7)
Tm = tens2mat(T,3);
size(Tm);
U = randn(7,12,3)
Um = tens2mat(U,[2 3],1)
size(Um)
size(Tm)
S = reshape((Um*Tm)',5,2,12,3)

Ts = tensor(T)			% Sandia
Us = tensor(U)			% Sandia
Ss = ttt(Ts,Us,3,1)			% Sandia
Same as:
Ss =contract(ttt(Ts,Us),3,4)       	% Sandia
size(Ss)				% Sandia


The central operator in tensor analysis is the outer or tensor product, which for tensors:



yields the tensor:


of order (N + M), with entries:


The functions outprod(A,B) (Tensorlab) and ttt(A,B) (Sandia) compute the outer product of two tensors A and B. If A or B, is a row or column vector, respectively, the singleton dimension is discarded.
A = randn(5,2,7)
B = randn(3,6,4)
ABo = outprod(A,B)       % Tensorlab
size(ABo)

As = tensor(A);               % Sandia
Bs = tensor(B);               % Sandia
Abos = ttt(As,Bs)            % Sandia
size(ABos)                      % Sandia

Note that for 1st-order tensors (vectors), the tensor product reduces to the standard outer product of two nonzero vectors:


which yields a rank-1 matrix:

 
Likewise, a 3rd order rank-1 tensor, for example , can be derived as the outer product of three vectors:




   
The 300 elements from a, b and c exactly determine all of the 1,000,000 elements of , and thus, instead of storing  and performing operations on , only the three vectors can be stored and used for calculations.
a = randn(7,1)
b = randn(5,1)
c = randn(12,1)
X = outprod(a,b,c)
size(X)

Notice that the Sandia toolbox calculates the outer product between 3 or more vectors using the set of functions specifically designed for the Canonical Decomposition (CPD, see below):
Xs = ktensor({a,b,c})	% Sandia	
size(Xs)			% Sandia

Given two tensors A and B, Tensorlab function inprod(A,B) computes the inner product A (:)'*B(:). The dimensions of the two tensors must match, and the result is a scalar. The Frobenius norm of a tensor is the square root of the sum of square moduli of its (known) elements. Given a tensor A, its Frobenius norm can be computed with frob(A). If the tensor is dense, this is equivalent with norm(A(:)), i.e., the two-norm of the vectorized tensor. The squared Frobenius norm can be computed with frob(A,'squared'), and is the same as inprod(A,A).
A = randn(5,2,7)
B = randn(5,2,7)
Ai = inprod(A,A)
frob(A)
frob(A,'squared')
Bi = inprod(B,B)
frob(B)
frob(B,'squared')
ABi = inprod(A,B)
ABi = A(:)'*B(:)

ABis = ttt(tensor(A),tensor(B),[1:3], ),[1:3])	% Sandia
ABis = ttt(tensor(A),tensor(B),[1:3])		% Sandia
ABis = innerprod(tensor(A),tensor(B))		% Sandia

Thus, notice that Sandia ttt function can be used for both inner and outer product, and for contraction.
 
If A and B are matrices of size I x J and K x L, respectively, then the Kronecker product of A and B is the IK x JL matrix:


For example:
A = randn(5,3)
B = randn(3,4)
C = randn(2,6)
AB = kron(A,B)
size(AB)
D = kron(A,B,C); D = kron(AB,C); D = kron(kron(A,B),C)
size(D)

Likewise, the Kronecker product of two Nth order tensors:



yields a tensor:



[image: ]of the same dimensions (Nth order), but enlarged in size. For example, if A and B are matrices of size I x J x K x L,  and M x N x P x Q respectively, then the Kronecker product of A and B is the IM x JN x KP x LQ matrix:

T = randn(5,2,7,3)
S = randn(4,3,6,2)
U = kron(T,S); size(U)
usize = size(T).*size(S)
U = mat2tens(U,usize,1,[2 3 4]); size(U)

We also distinguish between  and . Both products have the same elements, but one is shaped as a matrix and the other one as a vector:
a = randn(5,1)
b = randn(3,1)
C = a*b'
c = kron(a,b)

Let A and B both be matrices with N columns, then the Khatri–Rao product of A and B is the column-wise Kronecker product:


A = randn(5,3)
B = randn(4,3)
C = randn(20,3)
AB = [kron(A(:,1),B(:,1)) kron(A(:,2),B(:,2)) kron(A(:,3),B(:,3))]
AB = kr(A,B);size(AB)
D = kr(kr(A,B),C); D = kr(A,B,C);size(D)

ABs = khatrirao(A,B); size(ABs); Ds = khatrirao(A,B,C); size(Ds)  % Sandia
		
[image: ]Here we summarize the three most common forms of tensor products:

Tensor decomposition. At the beginning of our discussion of tensors we have seen how a typical Blind Source Separation (BSS) model can be expressed algebraically as some form of factorization of the data matrix  into the factor matrices   and  , a diagonal matrix , and a noise matrix :



We notice here that the SVD of a matrix represents a special case of the above:



which represents  as a linear combination of rank-1 matrices, with the added constraint that the columns of  and  are orthonormal. 

Extending this factorization concept to tensors we introduce the Polyadic Decomposition (PD), which represents an Nth-order tensor X as a linear combination of rank-1 tensors in the form:



We can recognize a clear similarity between the factor decomposition of a matrix and the PD decomposition of a tensor (for example, a 3rd order tensor):
[image: ]

X can equivalently be expressed using the double bracket convention as a multilinear product with a diagonal core:



or in matrix form as a Khatri-Rao product:


  
The tensor rank is defined as the smallest value of R for which the PD decomposition holds exactly; the minimum rank PD is called the Canonical Polyadic Decomposition (CPD), also known under the names CANDECOMP or PARAFAC (from Parallel Factor), and is highly desired in signal separation. Sometimes, the concept of border rank is used, which is defined as the minimum number of rank-1 tensors which provides the approximation of a given tensor within an arbitrary accuracy.

For 3rd-order tensors the CPD is unique up to some scaling and permutation ambiguities. The presence of noise in the data means that the CPD is rarely exact, and the fit of a CPD model to the data is typically achieved by minimizing the Frobenius norm of the difference between the given data tensor and its CP approximation. The computation is typically carried by Alternating Least Squares (ALS), optimizing the LS cost function for one component matrix at a time, while keeping the other component matrices fixed. 

We start by generating some synthetic data in the form of a cell array of random factor matrices:

size_tens = [7 8 9]; R = 4;
U = cpd_rnd(size_tens,R);
size(U)
 
Given a cell array of factor matrices U = {U{1},U{2},...}, its associated full tensor T (also known as a Kruskal tensor), can be computed with cpdgen:
T = cpdgen(U);

or as a sum of outer products:
T1 = outprod(U{1}(:,1),U{2}(:,1),U{3}(:,1));
T2 = outprod(U{1}(:,2),U{2}(:,2),U{3}(:,2));
T3 = outprod(U{1}(:,3),U{2}(:,3),U{3}(:,3));
T4 = outprod(U{1}(:,4),U{2}(:,4),U{3}(:,4));
T_sum = T1 + T2 + T3 + T4 ;
 
or as a Khatri-Rao product: 
M = U{1}*kr(U(end:-1:2)).';
size_tens = cellfun('size',U,1);
T_kr = mat2tens(M,size_tens,1);

Here we determine the factor matrices using an Alternating least square (ALS) algorithm requiring random initialization:
U_hat = cpd_als(T,cpd_rnd(size_tens,R))

Or we can use a higher order algorithm (which includes ALS and nonlinear least squares, NLS), that does its own internal initialization:
U_hat = cpd(T,R)

Here we compare the factors derived from CPD with those generated with cpd_rnd:
U{1}
U_hat{1}
U_hat{2}
U_hat{3}
 
T_hat = cpdgen(U_hat)
frob(T)
frob(T_hat)

Here we calculate the residual:
T_diff = T - T_hat
or
T_diff = cpdres(T,U_hat)

The relative error between T and its CPD approximation can be computed as:
relerr = frob(cpdres(T,U_hat))/frob(T); 

or alternatively by:
relerr = frobcpdres(T, U_hat)/frob(T);

Due to the permutation and scaling indeterminacies of the CPD, the columns of U_hat need to be permuted and scaled to match the columns of U as well as possible. The function cpderr takes care of these indeterminacies and computes the relative error between the two sets of factor matrices. The command also returns the permutation matrix P, N scaling matrices D (one for each factor matrix) and the permuted and scaled factor matrices U_hat_ps:

[relerr,P,D,U_hat_ps] = cpderr(U,U_hat);
U{1}
U_hat_ps{1}
U_hat{1}*P*D{1}

A product of the N scaling matrices D provides the scaling factors (akin to multilinear singular values, see below) that multiply each of the outer products that enter the summation:
lambda = diag(D{1}*D{2}*D{3})
U_hat_p = {U_hat{1}*P U_hat{2}*P U_hat{3}*P}
 
T1_hat_p = outprod(U_hat_p{1}(:,1),U_hat_p{2}(:,1),U_hat_p{3}(:,1));
T2_hat_p = outprod(U_hat_p{1}(:,2),U_hat_p{2}(:,2),U_hat_p{3}(:,2));
T3_hat_p = outprod(U_hat_p{1}(:,3),U_hat_p{2}(:,3),U_hat_p{3}(:,3));
T4_hat_p = outprod(U_hat_p{1}(:,4),U_hat_p{2}(:,4),U_hat_p{3}(:,4));
T_hat_p_sum = T1_hat_p*lambda(1) + T2_hat_p*lambda(2) ...
      + T3_hat_p*lambda(3) + T4_hat_p*lambda(4);

An estimate of the effective rank of a tensor (the smallest value of R for which the PD decomposition holds exactly) can be obtained using the rankest function. This function computes the CPD of the given tensor for various values of R, starting at the smallest integer [image: ]for which the lower bound on the relative error is smaller than MaxRelErr (set higher than the expected noise level). The number of rank-1 terms is increased until the relative error of the approximation is less than MinRelErr (set near the noise level). The corner of the resulting L-curve gives an optimal trade-off between accuracy (the relative error of the CPD) and the lower rank approximation (the number of rank-1 terms), and thus provides a good measure of the effective tensor rank.
 
rankest(T)
R = rankest(T)

Comparable functions for CP decomposition are provided in the Sandia Tensor Toolbox:

Sandia Basic ALS decomposition
Ts = tensor(T)
[Ps1,~,out1] = cp_als(Ts,4)
fit1 = 1 - norm(Ts-full(Ps1))/norm(Ts)
fit1 = 0.9999

Sandia + Poblano Optimization Toolbox
[Ps2,~,out2] = cp_opt(Ts,4)
fit2 = 1 - norm(Ts-full(Ps2))/norm(Ts)
fit2 = 1.0000
[image: ]
Sandia + Poblano Toolbox for sparse tensors
P = (double(Ts)~=0)
[Ps3,~,out3] = cp_wopt(Ts,tensor(P),4)
fit3 = 1 - norm(Ts-full(Ps3))/norm(Ts)
fit3 = 1.0000 

Rank
for i = 1:6
    [Ps,] = cp_opt(Ts,i);
    fit(i) = 1 - norm(Ts-full(Ps))/norm(Ts);
end
plot(fit,'-r')
ylim([0.2 1.2]);ylabel('fit')
xlim([1 6]);xlabel('rank');grid on


CPD, in which the core tensor D has nonzero elements only on main diagonal, can be considered as a special case  of Tucker decomposition. This decomposition treats a tensor:


 
as a multilinear transformation of a dense, not diagonal, small core tensor:



by factor matrices that may or may not be orthonormal, but that are assumed to be full rank:




[image: ]

as:

or equivalently:


with:



or in matrix form as a Kronecker product:



For a core tensor of minimal size, R1 is the column rank (the dimension of the subspace spanned by mode-1 fibers), R2 is the row rank (the dimension of the subspace spanned by mode-2 fibers), and so on. Differently from matrices, the values of R1, R2, ... , RN can be different from each other. The N-tuple (R1, R2, ... , RN) is called the multilinear rank (mlr) of tensor X. However, the core itself can be further decomposed by CPD giving an effective rank R.

The Table below summarizes the key differences between CPD and Tucker decomposition:
 
[image: ]

In contrast to CPD, the Tucker decomposition, in general, is not unique, as the factor matrices  are rotation invariant. Consider a 3rd order tensor : we can freely multiply the factor matrices  by non-singular matrices R, S, T, as this in turns changes the core:


is equivalent to:




However, physically, the subspaces defined by the factor matrices in Tucker decomposition are unique because, while the bases in these subspaces can be chosen arbitrarily, their choice is compensated by changes of the core tensor. In signal processing and data analysis, CPD is typically used for factorizing data into easy to interpret components (i.e., the rank-1 terms), while the goal of unconstrained Tucker decompositions is most often to compress data into a tensor of smaller size (i.e., the core tensor) or to find the subspaces spanned by the fibers (i.e., the column spaces of the factor matrices).

We can use the Sandia Tensor Toolbox to create synthetic data (a Tucker tensor) with some noise: 
synth_data = create_problem('Type', 'Tucker', 'Size', [5 4 3], 'Num_Factors', [3 3 2]);
Ss = synth_data.Soln  	% ‘exact’ factor matrices and core tensor
Xs = synth_data.Data	% data with noise 
 
If we know the number of factors we can use them directly in the decomposition:
Ts = tucker_als(Xs,[3 3 2])
fit = 1 - norm(Xs-full(Ts))/norm(Xs)
fit = 0.9211 

Of course a perfect fit is obtained taking all the possible components (this is the multilinear SVD, aka, Higher Order SVD, HOSVD; see below) :
Ts = tucker_als(X,Xsize);
fit = 1 - norm(Xs-full(Ts))/norm(Xs)
fit = 1.0000

Alternatively we can scan all possible combinations to identify an optimal decomposition:
Xsize = size(Xs);
fit_mat = zeros(Xsize)
for i = 1:Xsize(1)
    for j = 1:Xsize(2)
        for k = 1:Xsize(3)
            Ts = tucker_als(Xs,[i,j,k]);
            fit_mat(i,j,k) = 1 - norm(Xs-full(Ts))/norm(Xs);
        end
    end
end
fit_mat

fit_mat(:,:,1) =
    0.5827    0.5827    0.5827    0.5827
    0.5827    0.7889    0.7889    0.7889
    0.5827    0.7889    0.7900    0.7900
    0.5827    0.7889    0.7900    0.7904
    0.5827    0.7889    0.7900    0.7904

fit_mat(:,:,2) =
    0.5827    0.6229    0.6229    0.6229
    0.5888    0.8705    0.9139    0.9165
    0.5888    0.8743    0.9211    0.9269
    0.5888    0.8748    0.9220    0.9330
    0.5888    0.8748    0.9222    0.9336
[image: ]
fit_mat(:,:,3) =
    0.5827    0.6229    0.6231    0.6231
    0.5888    0.8708    0.9155    0.9191
    0.5910    0.8799    0.9346    0.9426
    0.5910    0.8875    0.9527    0.9741
    0.5910    0.8879    0.9546    1.0000
 
We can plot each layer of the fit matrix:
[Xaxis,Yaxis] = meshgrid(1:5,1:4)
Tucker_fit = figure
set(gcf,'Unit','Normalized','Position',…
[0.2 0.2 0.4 0.8]);
subplot(3,1,1)
surf(Xaxis,Yaxis,fit_mat(:,:,1)')
title('R_3 = 1')
xlabel('R_1');ylabel('R_2')
subplot(3,1,2)
surf(Xaxis,Yaxis,fit_mat(:,:,2)')
title('R_3 = 2')
xlabel('R_1');ylabel('R_2')
subplot(3,1,3)
surf(Xaxis,Yaxis,fit_mat(:,:,3)')
title('R_3 = 3')
xlabel('R_1');ylabel('R_2')

from which we might conclude that the best possible factorization reaches a plateau at the multilinear rank corresponding to the N-tuple (R1=2, R2=2, R3=2). An alternative way of evaluating the relative importance of the different components can be derived from the following consideration. The 1st product  in the Tucker representation of tensor X:



derives from the matrix multiplication of  times the mode-1 matricization of , . Each row of  corresponds to a horizontal (fiber) slice of  , and thus the rows of  provide the coefficients for the linear combination of the horizontal slices of  to . Intuitively, we can see how the (Frobenius) norm of each horizontal slice of  , reflects the strength of  the contribution to by the components in R1. Likewise, the (Frobenius) norm of each lateral slice of  , reflects the strength of  the contribution to by the components in R2, and the (Frobenius) norm of each frontal slice of  , reflects the strength of  the contribution to by the components in R3. 

sv1 = zeros(Xsize(1),1);
sv2 = zeros(Xsize(2),1);
sv3 = zeros(Xsize(3),1);

Horizontal (fiber) slices
for i = 1:Xsize(1)
    sv1(i) = norm(T.core(i,:,:));
end
Lateral slices
for i = 1:Xsize(2)sv1
sv2
sv3
0.6125
0.8348
1.4637
0.7575
2.5591
13.2179
0.8881
15.3884
20.1533
16.4710
18.4109

17.6062




    sv2(i) = norm(T.core(:,i,:));
end
Frontal slices
for i = 1:Xsize(3)
    sv3(i) = norm(T.core(:,:,i));
end
sv1, sv2, sv3

A drop of the slice norm close to 0 indicates that component has only a modest contribution to . Thus, this analysis confirms our interpretation of the plots of the fit values that the best possible factorization of  is obtained by choosing a core tensor of dimensions R1=2, R2=2, R3=2. Accordingly, the reconstituted tensor   is the best lower rank approximation of , often referred to as low multilinear rank approximation (LMRA):

Ts = tucker_als(Xs,[2 2 2]);
Ts_reduced = full(Ts);
fit = 1 - norm(Xs-full(Ts))/norm(Xs)
fit = 0.8705

The success of 2-way component analysis (PCA, ICA, NMF, SCA) is largely due to the constraints (i.e., orthogonality, independence, non-negativity, sparseness) we can impose. Without constraints matrix factorization loses most of its purpose, as the components are arbitrary and do not have a physical meaning. Likewise, unconstrained Tucker decomposition in general lacks physical meaning, and is only useful as multiway data compression. However, constraints imposed on all factor matrices and/or the core tensor can provide multiple sets of essential unique components with desired physical interpretation and meaning. 

When we apply the Tucker decomposition under the constraint of orthogonality (as we did in the example above), this decomposition is most often referred to as multilinear Singular Value Decomposition (MLSVD), or higher order SVD (HOSVD). Orthonormal basis are obtained via the SVD of the mode-n matricized tensor:



Due to the orthonormality, the corresponding core tensor becomes:



where the columns of  can be seen as the multilinear singular vectors, and the Frobenius norms of the corresponding slices of the core tensor are the multilinear singular values.  

As in the matrix case, the multilinear singular values govern the multilinear rank, while the multilinear singular vectors allow, for each mode separately, an interpretation as in PCA. Analogous to PCA, a large-scale data tensor X can be approximated by discarding the multilinear singular vectors and slices of the core tensor that correspond to small multilinear singular values, that is, through truncated matrix SVDs (see above). 

For example, while the SVD of matrix M can be written in tensor notation as:



the MLSVD of a 3rd-order, multilinear rank-(𝑅1,𝑅2,𝑅3) tensor can be written as:



and the multilinear rank corresponds to the dimensions of the different subspaces.

We stress here the fact that CP and Tucker/MLSVD decompositions are conceptually related, as they represent two aspects of the same process:
 
a) - the CPD core tensor is diagonal 
    - the number of CPD terms (r = rank) is not bounded by the (Tucker) multilinear rank (mlr)
    - the columns of the factor matrices are not orthogonal

b) - the Tucker core cannot be diagonalized 
    - the columns of the factor matrices are orthogonal

This relationship is highlighted below for a 3rd order tensor A: CPD
r may be > mlr
r

TUCKER
{r1,r2,r3} = mlr
mmm



Notice that the two decompositions are a consequence of the fact that it is not possible to have at the same time both a orthogonal core tensor and orthogonal factor matrices U, V, and W. In fact, if we had a tensor:


with both:

· diagonal   
· [image: ]orthogonal U,V,W  

the degrees of freedom of the RHS would be less than those of the LHS.
We can study the properties of MLSVD with synthetic exact data also using Tensorlab. Random factor matrices and a random core tensor are used to construct a multilinear rank-(2, 2, 3) tensor T : 
S = randn(2,2,3);
U = {rand(4,2), rand(5,2), rand(6,3)};
T = lmlragen(U,S);
size(T)

Next the MLSVD is computed using mlsvd:
[Ue,Se,sve] = mlsvd(T)

We can check the properties of the MLSVD:  the first 2, 2, and 3 columns of Ue{1}, Ue{2}, Ue{3}, respectively, are a basis for the column, row, and fiber subspaces of T , respectively. The function subspace computes the angle between subspaces, with a zero angle indicating that the spaces are identical:
subspace(Ue{1}(:,1:2),U{1})
subspace(Ue{2}(:,1:2),U{2})
subspace(Ue{3}(:,1:3),U{3})
[image: ]

The remaining 2, 3, and 3 columns of Ue{1}, Ue{2}, Ue{3}, are orthogonal bases for the complements of the column, row and fiber subspaces of T . These subspaces are orthogonal to the column, row, and fiber subspaces, respectively:
U{1}'*Ue{1}(:, 3:end)
U{2}'*Ue{2}(:, 3:end)
U{3}'*Ue{3}(:, 4:end)

As for the case of a matrix SVD, the multilinear singular values contained in the output variable sve indicate the importance of a basis vector in a particular mode. However, in contrast to the SVD, the core tensor S is not diagonal, and the multilinear singular values are defined as the Frobenius norms of the slices of S:
nrm = zeros(size(Se,1),1);
for i = 1:size(Se,1)
nrm(i) = frob(Se(i,:,:));
end
nrm % mode-1 singular values
sve{1}

As for the Sandia Tensor Toolbox, in Tensorlab the multilinear rank of a tensor can be determined by looking at its multilinear singular values 𝜎r(𝑛), as these suddenly drop close to 0 for 𝑟 > 𝑅𝑛, in which 𝑅𝑛 is the mode-𝑛 rank.
for n = 1:3
subplot(1,3,n);semilogy(sve{n},'.-');
xlim([1 length(sve{n})]); grid on
end

or using the function mlrankest:
mlR = mlrankest(T)

Just like SVD for matrices, MLSVD can be used conveniently to obtain a low rank approximation of tensors. For example, consider a tensor with random entries:
size_tens = [10 20 30];
T = randn(size_tens);
[U,S,sv] = mlsvd(T);

We can obtain back the original tensor from the multilinear product :
T_hat = tmprod(S,U,1:3);

We notice here that the factor matrices ,  ,  have orthonormal columns, and  is an orthogonal tensor. This means that all slices of order N−1 are mutually orthogonal to each other. We test this for the 2nd mode by computing the inner product between slices. To do this efficiently, we unfold the tensor in mode-2.
M = tens2mat(Se, 2);
M*M'

As expected all the off-diagonal entries are zero, and the diagonal contains the squared multilinear singular values for the 2nd  mode.
[sv{2} sv{2}.^2]

We derive as usual the multilinear singular values:
nrm = zeros(size(S,1),1);
for i = 1:size(S,1)
nrm(i) = frob(S(i,:,:));
end
nrm % mode-1 singular values
sv{1}

However, in this case it is difficult to evaluate the multilinear rank from a plot of the multilinear singular values:
for n = 1:3
subplot(1,3,n);
semilogy(sv{n},'.-');
xlim([1 length(sv{n})]); grid on
end
 
and a better result is obtained with the function mlrankest:
mlR = mlrankest(T_hat)

A truncated MLSVD (low rank approximation) can be obtained by providing the desired core size as second input argument:
size_core = [4 5 6];
[U,S,sv] = mlsvd(T,size_core);
T_hat_tr = tmprod(S,U,1:3);

However, due to the truncation, the core tensor is no longer orthogonal and ordered. For this reason, in order to derive the multilinear singular values we rerun mlsvd:
[U_tr,S_tr,sv_tr] = mlsvd(T_hat_tr);
 
Multilinear singular values:
nrm = zeros(size(S_tr,1),1);
for i = 1:size(S_tr,1)
nrm(i) = frob(S_tr(i,:,:));
end
[image: ]nrm % mode-1 singular values
sv_tr{1}
 
Multilinear rank:
for n = 1:3
subplot(1,3,n);
semilogy(sv_tr{n},'.-');
xlim([1 length(sv_tr{n})]); grid on
end 
mlR_tr = mlrankest(T_hat_tr)


The truncated MLSVD is just one way of obtaining a low multilinear rank approximation (LMLRA). Sometimes, a better approximation with the same multilinear rank can be obtained with the lmlra command, which internally uses a different algorithm:
 [U_lmlra,S_lmlra] = lmlra(T,size_core);
T_hat_lmlra = tmprod(S_lmlra,U_lmlra,1:3);
 
Multilinear singular values:
nrm1 = zeros(size(S_lmlra,1),1);
for i = 1:size(S_lmlra,1)
nrm1(i) = frob(S_lmlra(i,:,:));
end
nrm1 % mode-1 singular values
nrm2 = zeros(size(S_lmlra,2),1);
for i = 1:size(S_lmlra,2)
nrm2(i) = frob(S_lmlra(:,i,:));
end
nrm2 % mode-2 singular values
[image: ]nrm3 = zeros(size(S_lmlra,3),1);
for i = 1:size(S_lmlra,3)
nrm3(i) = frob(S_lmlra(:,:,i));
end
nrm3 % mode-3 singular values
sv_lmlra = {nrm1 nrm2 nrm3};
 
Multilinear rank:
for n = 1:3
subplot(1,3,n);
semilogy(sv_tr{n},'.-');
xlim([1 length(sv_tr{n})])
grid on
end
 
mlR_lmlra = mlrankest(T_hat_lmlra)


Block Term Decomposition

We have seen how, within permutation and scaling ambiguities, CPD: 

[image: ]

A special advantage of tensors over matrices is that it is possible to relax the rank-1 constraint on the terms, thus opening completely new avenues for factorization. For example, considering the 3rd -order case, we can represent the tensor X as:



in which we use carry out a decomposition into terms with multilinear rank (Lr , Lr , 1) .
[image: ]
Alternatively, we can decompose X as:



[image: ]in which we use carry out a decomposition into terms with multilinear rank (Lr, Mr, Nr)

These two forms represent variations of Block Term Decomposition (BTD): under proper constraints BTD is unique like CPD, but allows for the modelling of more complex signal components than CPD.


Decomposition into terms with multilinear rank (Lr ,Lr ,1)

The function ll1_rnd generates pseudorandom factors for a decomposition in multilinear rank (Lr ,Lr ,1). For example, consider a tensor of size 10×11×12 that can be written as a sum of three terms with multilinear ranks (2,2,1), (3,3,1) and (4,4,1). We set L = [2 3 4]:
 
size_tens = [10 11 12];
L = [2 3 4];

% Default format (btd)
U = ll1_rnd(size_tens, L);
U
U{1}
U{1}{4}

Here we generate the BTD terms, each containing factor matrices U(r,n) and core tensors S(r), stored as a cell of cells U. We can use a CPD or BTD format for U:
 
CPD format
U = ll1_rnd(size_tens, L,'OutputFormat', 'cpd');

The result U is a cell of length R=3:

U = [10x9 double]    [11x9 double]    [12x3 double]

with 9 columns, [10x2 10x3 10x4] and [11x2 11x3 11x4], in the first two factor matrices and R columns, [12x1 12x1 12x1], in the third factor matrix. When using the CPD format, the parameter L provides the necessary information on how the columns are grouped.

To expand the factorized representation U of the decomposition in multilinear rank (Lr ,Lr ,1) terms to a full tensor, we use ll1gen:
T = ll1gen(U,L)
 
BTD format
U = ll1_rnd(size_tens, L,'OutputFormat', 'btd');
T = ll1gen(U)
 
Here we compute a decomposition in multilinear rank (Lr ,Lr ,1):
[Uhat,output] = ll1(T, L);
 
The residual between a tensor T and its decomposition in multilinear rank (Lr ,Lr ,1) terms given by Uhat is: 
res = ll1res(T, Uhat);    % Uhat in BTD format
res = ll1res(T, Uhat, L); % Uhat in CPD or BTD format 
or
ll1gen(Uhat)-T
ll1gen(Uhat,L)-T

The relative error between the tensor and its CPD approximation is: 
relerr = frob(ll1res(T,Uhat))/frob(T);   % Uhat in BTD format
relerr = frob(ll1res(T,Uhat,L))/frob(T); % Uhat in CPD or BTD format

Decomposition into terms with multilinear rank (Lr ,Mr ,Nr)
 
Here we use the function btd_rnd to generate pseudorandom factor matrices and core tensors corresponding to a BTD. 
The size of the tensor is given by size_tens: 
size_tens = [17 19 21];

The size of the R core tensors is given by the cell size_core: 
size_core = {[3 5 7],[6 3 5],[4 3 4]};

Here we generate the BTD terms, each containing factor matrices U(r,n) and core tensors S(r), stored as a cell of cells U.
U = btd_rnd(size_tens,size_core);
 
Given a cell array of block terms U = {U{1},U{2},...}, its associated full tensor T can be computed:
T = btdgen(U);
 
In contrast to the CPD, LMLRA and the decomposition in multilinear rank-(Lr,Lr,1) terms, no specialized high-level algorithm is available for a general BTD with multilinear rank (Lr, Mr, Nr). This means that the user has to generate an initialization (guess) tensor and select a specific (family of) algorithm(s) such as btd_nls or btd_minf to compute the BTD.

· btd_nls(T, U) computes the BTD of a tensor T using nonlinear least squares algorithm with initial guess U.
· btd_minf(T, U) computes the BTD of a tensor T using nonlinear unconstrained optimization with initial guess U.

For example, to compute a BTD of tensor T we can first produce an initialization U0 as a very noisy version of the original U. Then we use the command btd_nls(T,U0):
U0 = noisy(U,20);
[Uhat,output] = btd_nls(T,U0);
 
The residual between a tensor T and its BTD defined by the factors Uhat(r,n) and the core tensors S(r)(stored in Uhat) can be computed with:
res = btdgen(Uhat)-T
res = btdres(T,Uhat);
 
The relative error between T and its BTD is:
relerr = frob(btdres(T,Uhat))/frob(T); 
relerr = frobbtdres(T,Uhat)/frob(T); 
 


PRACTICE: Parafac, Tucker/HO-SVD.

Here we review some practical aspects of multi-way analysis using the N-way Toolbox  for MATLAB (https://www.mathworks.com/matlabcentral/fileexchange/1088-the-n-way-toolbox) developed by Rasmus Bro (http://www.models.life.ku.dk/users/rasmus), and some examples from its tutorials. 

Example 1: After installing the N-way Toolbox in our TOOLBOXES directory, we start by loading the fluorescence excitation/emission data from five samples containing 3 amino acids: tryptophan, phenylalanine, and tyrosine.
addpath(genpath('../TOOLBOXES/nway331'));
load ../TOOLBOXES/nway331/claus
[nsamples,n_em_wl,n_ex_wl] = size(X)

ans = 5   201    61

[image: ]Emission spectra have 201 wavelengths (from 250 to 450 nm), excitation spectra have 61 wavelengths (from 240 to 300 nm). Thus, each frontal slice in the first 2 dimensions contains 5 emission spectra at one excitation wavelength. And each horizontal slice in the 2nd and 3rd dimensions contains the emission from 1 samples at all wavelengths upon excitation at all excitation wavelengths.

Here we plot as landscape all 5 samples (horizontal slices). 

'AA_mixtures = figure;
set(gcf,'Unit','Normalized','Position', [0.1 0 0.25 1])
for i = 1:nsamples
subplot(nsamples,1,i),…
mesh(EmAx,ExAx,reshape(X(i,:),201,61)')
zlabel('Intensity')
axis tight;box on
title(['Sample ' num2str(i)])
end
xlabel('Emission wavelength')
ylabel('Excitation wavelength')


Each of the three amino acids in the samples can be described by one PARAFAC (CPD) component. The output Factors is a cell array of 3 elements (A,B,C). 

 [Factors] = parafac(X,3); 
[A,B,C] = fac2let(Factors);
 
A (5 x 3) contains the sample mode loadings, B (201 x 3) contains the emission mode loadings, and C (61 x 3) contains the excitation mode loadings. 
plot(EmAx,B)
plot(ExAx,C)

We can plot all loadings at once  by entering:
plotfac(Factors).

From the estimated loadings it is possible to estimate the model of the data slice by slice. For example, the 3rd frontal slice (mode 1) is obtained as:
S1_3 = A*diag(C(3,:))*B';

and the 5th (mode 3) slice is obtained as:
S3_5 = B*diag(A(5,:))*C';
 
We can matricize the model along 3 different modes using the Kathri-Rao product:
M1 = A*kr(C,B)'; % Column fibers provide the columns of M1
M2 = B*kr(C,A)'; % Row fibers provide the columns of M2
M3 = C*kr(B,A)'; % Tube fibers provide the columns of M3

We reconstruct the 3-way array reshaping:
M = reshape(M1,[5 201 61]);
 
Alternatively we simply use the function nmodel:
M = nmodel(Factors); 

The residual in the fit can be obtained directly:
R = X(:)-M(:);
sse = R'*R
 
or using a mofied syntax in tha parafac function:
[Factors,it,sse] = parafac(X,3);
sse
 
Finally, we can also repeat the fit using orthogonality and/or non-negativity constraints.
 
1. Orthogonality constraints among the columns of each factor matrix. Notice that it is not possible to orthogonalize all 3 factor matrices (the A matrix is left unconstrained):
[Factors_orth,it_orth,sse_orth] = parafac(X,3,[],[0 1 1]);
sse_orth
Factors_orth{1}'*Factors_orth{1}
Factors_orth{2}'*Factors_orth{2}
Factors_orth{3}'*Factors_orth{3}
 
plot(EmAx,B)
plot(ExAx,C)
 
2. Non-negativity constraints on the columns of each factor matrix:
[Factors_nneg,it_nneg,sse_nneg] = parafac(X,3,[],[2 2 2]);
sse_nneg
bar(Factors_nneg{1}')
xlabel('Analytes')
ylabel('Concentration (arbitrary units)')
plot(EmAx,B)
[image: ]plot(ExAx,C)


We can solve the same problem using Tensorlab.  In this case the solution is found by invoking a function called Structured Data Fusion (SDF), which allows the joint factorization of one or more coupled data sets while optionally imposing structure on the factors. In a data fusion problem, each data set (stored as a dense, sparse or incomplete tensor) can be factorized with a different tensor decomposition. Currently, the user has the choice of the CPD and BTD models. Structure can be imposed on the factors in a modular way and the user can choose from a library of predefined structures such as nonnegativity, orthogonality. 

Here we switch to Tensorlab.
rmpath(genpath('../TOOLBOXES/nway331'));
addpath(genpath('../TOOLBOXES/tensorlab_2016-03-28'))

Tensor dimensions and CPD components. 
I1 = 5;
I2 = 201;
I3 = 61;
R = 3;
 
First, we create a structure model which defines the variables of the SDF problem. The 'variables' field defines the parameters which are optimized, and is also used as initialization for the SDF algorithm.
 
Define model variables.
model.variables.u1 = randn(I1,R);
model.variables.u2 = randn(I2,R);
model.variables.u3 = randn(I3,R);
 
Here, the variables are defined as a MATLAB array. It is also perfectly valid to define variables as (nested) cell arrays of arrays, if desired. Now we need to define the factors. There are three factors in this CPD, which we define as a transformation of the variables u1, u2, u3. We also require the factor to be nonnegative.
 
Define model factors as transformed variables.
model.factors.U1 = {'u1',@struct_nonneg}; 
model.factors.U2 = {'u2',@struct_nonneg}; 
model.factors.U3 = {'u3',@struct_nonneg};
  
Finally, we define the data set to be factorized and which factors to use. Each factorization in the SDF problem should be given a new name. In this case there is only one factorization 'fact_1' and it contains two fields. The first is 'data' and contains the tensor to be factorized. The second should be either 'cpd' or 'btd', depending on which model to use, and should define the factors to be used in the decomposition. Note that it is not necessary to use fields to describe the names of the variables and factors. Instead, one may also create cell arrays of variables and factors and use indices to refer to them.
 
Define model factorizations.
model.factorizations.fact_1.data = X;
model.factorizations.fact_1.cpd = {'U1','U2','U3'};
 
Equivalent SDF model without using names for variables and factors.
% model.variables = { randn(I1,R) randn(I2,R) randn(I3,R)};
% model.factors = { {1,@struct_nonneg} {2,@struct_nonneg} {3,@struct_nonneg} };
% model.factorizations.fact_1.data = X;
% model.factorizations.fact_1.cpd = {1,2,3};
 
The model can now be solved with one of the two families of algorithmsfor SDF problems: sdf_minf and sdf_nls. In the case of many missing entries, the sdf_minf family is likely to perform best. Their first output contains the optimized variables and factors in the fields 'variables' and 'factors', respectively.
 
Solve the SDF problem.
options.Display = 5; % View convergence progress every 5 iterations.
sol = sdf_nls(model,options);
sol.variables
sol.factors
 
CPD_aa_mixture = figure;
set(gcf,'Unit','Normalized','Position',[0.2 0.6 0.5 0.3])
subplot(1,3,1)
bar(sol.factors.U1')
xlabel('Analytes');
ylabel('Concentration (arbitrary units)')
grid on
subplot(1,3,2)
plot(EmAx,sol.factors.U2)
xlabel('Emission wavelength')
ylabel('Intensity')
grid on
subplot(1,3,3)
plot(ExAx,sol.factors.U3)
xlabel('Excitation wavelength')
ylabel('Quantum yield')
grid on

[image: ] 
U_hat = {sol.factors.U1 sol.factors.U2 sol.factors.U3}
T_hat = cpdgen(U_hat)
res_t = X(:)-T_hat(:);
sse_t = res_t'*res_t


[bookmark: _GoBack]Example 2: Here we compare a PCA to a N-way analysis of a data set consisting of the assessment by 8 judges of 10 breads with respect to 11 attributes. The data are in the matrix X. Samples are in duplicate. 
load ../TOOLBOXES/nway331/brod
size(X)

If the data matrix is unfolded such that the breads (the observations) are the row-mode and the attributes and judges (the variables) are the column-mode, then the data can be written as X = [X1 X2 .. X8], where Xk (the kth frontal slice of X) is the assessments of the kth judge. 

[image: ]

We first center the data along the observations (mode 1) using the N-way toolbox nprocess function, then we reshape the tensor as a matrix:
Cent  = [1 0 0];
Scal  = [0 0 0];
Xmean = nprocess(X,Cent,Scal);
Xmean = reshape(Xmean,10,88);
size(Xmean)
ans =  10  88

If we make an f-component PCA model (a model with f latent variables) of this matrix we obtain the approximation:
Xmean = TPT

where T is the 10 x f score matrix related to the breads and P is the 88 x f loading matrix related to both judges and attributes. The 1st eleven rows of P correspond to the 1st judge, the 2nd eleven rows to the 2nd judge, and so on. Clearly, the loading elements for each judge are not related to the loading elements of the other judges. Thus, in unfolding we impose no relation between judges. 

For example, we can use SVD to calculate a 2-component PCA model of Xmean:
[U,S,V] = svd(Xmean,0);
T = U(:,1:2)*S(1:2,1:2);    	% Score matrix
P = V(:,1:2);               	% Loading matrix
Xmean_pca = T*P';
e_pca = Xmean(:) - Xmean_pca(:);
sse_pca = e_pca'*e_pca
sse_pca = 557.5816

If instead we retain the structure of the three-way data we obtain the PARAFAC model for the k frontal slice of Xmean:
Xmean,k = ADkBT

where A is the 10 x f score matrix for the breads (similar to T), B is the 11 x f loading matrix for the attributes, and Dk is a diagonal matrix holding the kth row of C which is the 8 x f loading matrix for the judges. This trilinear model implies that all the judges use the same type of sensations (the latent variables) given by B to derive the breads attributes, but each judge assigns a different weight to these sensations. For example, the kth judge uses the first component with a relative magnitude of c(k,1) which is the first diagonal element in Dk. 

Here we fit a 2-component parafac model:
Xmean_tens = nprocess(X,Cent,Scal);
[Factors,it,sse_parafac] = parafac(Xmean_tens,2,[],[0 0 0]);
A = Factors{1};
B = Factors{2};
C = Factors{3};
sse_parafac = 826.9401

The trilinear PARAFAC model is more restricted than the bilinear PCA model derived from unfolding Xmean: in fact, each component of the bilinear model uses 98 (10+88) parameters, while each component of the trilinear model uses only 29 (10+11+8) parameters. This explains the higher residual of the PARAFAC model. However, the better fit of the bilinear model is largely due to additional fitting of the noise in the data. For the bilinear model to be accepted, there must be a significant improvement over the trilinear model, otherwise the increased number of parameters will only fit noise. 

We can plot the two dimensions (the latent variables) of the loading matrix B for the attributes against each other, and likewise the two dimensions of the scores from both the PCA and the PARAFAC model: 

Loading_Scores_plot = figure
set(gcf,'Unit','Normalized','Position', [0.1 0 0.25 0.9])
[image: ] 
subplot(2,2,1:2)
plot(B(:,1),B(:,2),'sr','MarkerSize',10,'LineWidth',1.5)
for i = 1:size(B,1)
   text(B(i,1)-0.035,B(i,2)-0.04,attrib(i,:),…
'FontSize',14,'Color','blue')
end 
grid on; title('Loadings')
xlabel('Latent Variable 1')
ylabel('Latent Variable 2')
 
subplot(2,2,3)
plot(T(:,1),T(:,2),'or','MarkerSize',25,'LineWidth',2)
for i = 1:size(T,1)
  text(T(i,1)-0.3,T(i,2),num2str(i),…
'FontSize',14,'Color','blue')
end 
grid on;title('PCA')
xlabel('Score: Latent Variable 1')
ylabel('Score: Latent Variable 2')

subplot(2,2,4)
plot(-A(:,1),A(:,2),'or','MarkerSize',25,'LineWidth',2)
for i = 1:size(A,1)
  text(-A(i,1)-0.3,A(i,2),num2str(i),…
'FontSize',14,'Color','blue')
end 
grid on;title('PARAFAC')
xlabel('Score: Latent Variable 1')


We recall here the conceptual difference between PARAFAC/CANDECOMP/CPD and TUCKER/HO-SVD. In PARAFAC a three-way array  is decomposed into a systematic part, described by R (not to be confused with the vector space symbol ) outer products of vectors (each outer product is called a triad) and an unmodelled part denoted by E, representing the deviation of the model from the measured data.

[image: ]
 
The vectors a1 to aR are the columns of matrix  Such a matrix is called a component or factor matrix. Accordingly, the vectors in mode two and three are arranged in component matrices , and  such that:




If the correct number of components are extracted, the vectors (components) of the factor matrices of the PARAFAC model are determined uniquely up to permutations and scaling, which are provided by the core tensor . This allows for resolving pure chemical spectra from N-way data as we have seen in a previous example. 
However, it is important to keep in mind that the PARAFAC model requires the same number of components to be extracted in all modes. This means that each of the factor matrices has the 2nd dimension fixed at the same number  of components (not bounded by the dimensions ).
In contrast, the TUCKER model allows for the extraction of different numbers of components in each of the modes. We refer to these numbers as . 

One major difference to the PARAFAC model is the presence of the core tensor . The model is a weighted sum of all possible outer products (triads), where the weight of the outer product between the r1 th factor from A, the r2 th factor from B and the r3 th factor from C is determined by element gr1r2 r3 of the core tensor G. 
[image: ] 
The profiles derived by the PARAFAC model are usually left unconstrained for chemical applications. In contrast, the factors in the TUCKER model are most often constrained to be orthogonal: for this reason the Tucker decomposition is often referred to as 3-way PCA or (for higher dimensions, as High Order SVD (HO-SVD).

It is worth noting that in dealing with 3-way arrays it is often customary to consider 3 different types of Tucker decompositions, known as Tucker-3, Tucker-2, and Tucker-1, depending on how many dimensions are left uncompressed. In all of them, the 3-linearity of the model is preserved by a 3-way core G tensor. The following are the mathematical representations of the three forms:
Tucker-3: 

Tucker-2 (3 possible modes): 






Tucker-1 (3 possible modes): 


[image: ]

The Tucker3 model is the only true 3-way model since it explicitly establishes a relationship between factors in the three modes spanned by the data. However, if one of the modes contains very few observations, and the data needs no compression in that mode, it is possible to apply the Tucker2 model which uses only two component matrices. 
The Tucker2 model leaves one mode in X uncompressed. Hence, the model uses only two component matrices, but still has a full 3-way G core. 
The Tucker1 model is the same as doing PCA (for example by SVD) on one of the three unfolding matrices, not utilizing the three-way structure of data.
Here is an example:
load howto2   

Here we calculate 3 different TUCKER1 models. Notice the meaning of the output:

  Factors  : 	A row-vector containing the solutions.
  G           : 	Core array that matches the dimensions defined by 'Fac'.
  SSE       : 	Fraction of variance (sums of squares explained)

W2 = [3 -1 -1]
[Factors,G,SSE] = tucker(X,W2); 
W2 = [-1 -1 2]
[Factors,G,SSE] = tucker(X,W2); 
W2 = [-1 3 -1]
[Factors,G,SSE] = tucker(X,W2); 
 
Here we calculate a TUCKER2 models:
W2 = [3 3 -1]
[Factors2,G2,SSE2] = tucker(X,W2);
 
Estimate the model from the calculated solutions:
Xm2 = nmodel(Factors2,G2);
 
Calculate the corresponding three-way residuals:
Xres2 = X-Xm2;  
for k=1:size(X,1)
    mesh(squeeze(Xres2(k,:,:)));
    title(['Sample num.' int2str(k) '/' int2str(size(X,1))]);
    pause;
end
close

Other possible TUCKER2 models:
W2 = [3 -1 2]
[Factors,G,SSE] = tucker(X,W2); 
W2 = [-1 3 2]
[Factors,G,SSE] = tucker(X,W2); 

Here we calculate a (3,3,2) Tucker3 model: 
W3=[3 3 2];
[Factors3,G3,SSE3] = tucker(X,W3);  
 
Xres2 = X-Xm2;  
for k=1:size(X,1)
    mesh(squeeze(Xres2(k,:,:)));
    title(['Sample num.' int2str(k) '/' int2str(size(X,1))]);
    pause;
end
close

Here we compare the residuals of Tucker2 and Tucker3:
Xres2(:)'*Xres2(:)
ans = 69.0814
Xres3(:)'*Xres3(:)
ans = 237.0510 

Now, consider a three-way data array X with dimensions (I=10, J=18, K=5). 
load howto1

We want to calculate a Tucker3 model with 2 components in the first mode, 3 in the second and 2 in the third mode (mlr = [2 3 2]). 
 [Factors,G,SSE] = tucker(X,W);

The non-uniqueness (i.e., rotation, scaling and permutation) of the factors from Tucker decomposition explains the need to explore the model by analyzing the features of the core tensor G, which contains the weights of all possible triads. In order to compare these weights, the factors are scaled to unit length, such that the core elements represent the importance of the respective factor combinations. The largest squared elements of the core indicate the most important factors combinations in the model of X. 

Furthermore, for orthogonal model (columnwise orthornormal factor matrices), when the model fits the data ideally the size of the squared core entries is proportional to the variance of the model explained by the factor combinations, and the sum of the squared core entries equals the sum of the squared entries of X. 

Find the 5 most important factor combinations from G.  
explcore(G,5);

Col1: Number in list
Col2: Index to elements
Col3: Explained variation (sum of squares) of the core.
Col4: Core entry.
Col5: Sq. core entry.
 1    ( 1, 1, 1)        83.61973%     -2144.73519    4599889.03016
 2    ( 2, 1, 2)         6.43631%      -595.02856     354058.99037
 3    ( 1, 2, 2)         5.88144%      -568.80212     323535.84843
 4    ( 2, 2, 2)         1.71375%       307.03888      94272.87469
 5    ( 2, 2, 1)         0.88638%       220.81548      48759.47557 

We recall here that Tucker3 models do not provide unique solutions. By applying rotation matrices to the factor matrices we can obtain infinite different solutions A, B, C, and G that fit equally well the same array X. This however, has no impact on the interpretation because the systematic behavior caught by one model is the same in all models. In fact, it is possible to choose freely from any model that has been transformed by orthonormal rotations. As the interpretation of a core starts by identifying the significant factor combinations, it is advantageous to apply rotations to get a core that contains only few large elements, since this will give a clear and direct approach to understanding the most important features of the model.  

On this basis, a solution derived by orthogonality constrained models can be rotated to yield a new optimally interpretable solution. There are two approaches to achieve this goal, which for complex models can be used in combination:
 
1. Optimize the factors or component matrices. For example, it may be desirable to optimize the variance of the factors. The most common measures of variance belong to the family of Orthomax, e.g. Varimax and Quartimax (see CHAPTER 10 Special Topic: Rotational ambiguity of eigenvector basis in PCA).

2. Optimize the core to have a simple optimal structure. Most often this corresponds to optimizing the variance of the squares of the core. Alternatively, the goal can be to maximize the values on the core diagonal. The following is an example of this kind of optimization:
 
Load X and W:
load howto5 
 
Make the Tucker model:
[Factors,Go] = tucker(X,W); 
 
Convert to component matrices:
[A B C] = fac2let(Factors); 
 
Rotate to optimum diagonality:
[Gd,Od1,Od2,Od3] = maxdia3(Go); 
 
Rotate to optimum variance of squares:
[Gv,Ov1,Ov2,Ov3] = maxvar3(Go); 
 
Inspect the unrotated solution:
explcore(Go,7); 
 
Inspect the diagonalized solution:
explcore(Gd,7); 
 
Inspect the variance-of-squares optimized solution:
explcore(Gv,7); 

Reshape X and G to unfolded matrices to generate the unfolded model tensor:
Xunf = reshape(X,size(X,1),size(X,2)*size(X,3)); 
Gounf = reshape(Go,size(Go,1),size(Go,2)*size(Go,3)) 
Gdunf = reshape(Gd,size(Go,1),size(Go,2)*size(Go,3)) 
Gvunf = reshape(Gv,size(Go,1),size(Go,2)*size(Go,3))
 
Notice that the error is unchanged between the three solutions:
sum(sum( (Xunf - A*Gounf*kron(C',B')).^2 )) 
sum(sum( (Xunf - (A*Od1)*Gdunf*kron((C*Od3)',(B*Od2)')).^2 )) 
sum(sum( (Xunf - (A*Ov1)*Gvunf*kron((C*Ov3)',(B*Ov2)')).^2 )) 
 
If you have a model with A, B, C and G and want to predict the scores for a new sample, recall the following:


Unfold G in mode 1:
g = reshape(Go,size(Go,1),size(Go,2)*size(Go,3)); 
 
Unfold the data used to fit the model in mode 1:
x = reshape(X,size(X,1),size(X,2)*size(X,3));

Calculate the product :
Z = g*kron(C,B)';
 
Now we can write:




Then to verify, you should find that A_recov equals A: 
A_recov = x*pinv(Z);
A
 
To fit new samples simply do:
Anew = xnew*pinv(Z);
 
 
Next we explore possible dimensionalities R = (1,1,1), (2,2,1),...,(10,10,10) to find the optimal model of X. It's important to remember that the maximum number of factors to extract cannot be higher than the product of the two lower. We have an optimal model when the increase in dimensionality no longer increases the fit significantly. We can use the increase in SSE (explained sum of squares) or in the value of the fit (as described previously), to identify the simplest model of X.

p = 0;
Rmat = zeros(1000,3);
SSE = zeros(1000,1);
FIT1 = zeros(1000,1);
FIT2 = zeros(1000,1);
 
for r1 = 1:10
    for r2 = 1:10
        for r3 = 1:10
            R = [r1 r2 r3];
            if prod(R)/max(R)>=max(R)
                p = p+1
                Rmat(p,:) = R;	    
                [Factors1,G1,SSE(p),T1] = tucker(X,R); 	% for N-way toolbox
                FIT1(p) = 1 - frob(X-T1)/frob(X);		% for N-way toolbox
                [Factors2,G2,sv] = mlsvd(X,R);		% for Tensorlab
                T2 = tmprod(G2,Factors2,1:3); 		% for Tensorlab
                FIT2(p) = 1 - frob(X-T2)/frob(X); 		% for Tensorlab 
            end
        end
    end
end

MLR_scan = figure;
set(gcf,'unit','Normalized','Position',[0.2 0.6 0.5 0.4]);
subplot(1,3,1)
[sorted_SSE ind] = sort(SSE);
plot(sorted_SSE);
title('SSE (Tucker model)');
xlabel('Model dimensionality (sorted)');
ylabel('Explained variation of X');
grid on;
 
subplot(1,3,2)
[sorted_FIT1 ind1] = sort(FIT1);
plot(sorted_FIT1);
title('FIT (Tucker model)');
xlabel('Model dimensionality (sorted)');
ylabel('Explained variation of X');
grid on;
 
subplot(1,3,3)
[sorted_FIT2 ind2] = sort(FIT2);
plot(sorted_FIT2);
title('FIT (MLSVD)');
xlabel('Model dimensionality (sorted)');
ylabel('Explained variation of X');
grid on;

[image: ]

N-way (function tucker) and Tensorlab (function mlsvd) give comparable results:

mlr_tucker_sse = Rmat(ind(492),:)
mlr_tucker_sse = 3     3     3
tucker_sse = SSE(ind(492))
tucker_sse = 99.1383
mlr_tucker_fit = Rmat(ind(492),:)
mlr_tucker_fit = 3     3     3
tucker_fit = FIT1(ind1(492))
tucker_fit = 0.9072
mlr_mlsvd_fit = Rmat(ind2(493),:)
mlr_mlsvd_fit = 4     3     3
fit_mlsvd_fit = FIT2(ind2(493))
mlsvd_fit = 0.9072 
 
[Factors1,G1] = tucker(X,[3 3 3]);
T1 = tmprod(G1,Factors1,1:3);
FIT_tucker = 1 - frob(X-T1)/frob(X)
FIT_tucker = 0.9072 

[Factors2,G2] = mlsvd(X,[4 3 3]);
T2 = tmprod(G2,Factors2,1:3);
FIT_mlsvd = 1 - frob(X-T2)/frob(X)
FIT_mlsvd = 0.9072

With the best model having an mlr = [3 3 3] (N-way) or [4 3 3] (Tensorlab).
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