Matrix factorization and systems of linear equations. 

LU and LDL factorization. At the end of Gaussian elimination the matrix multiplication:

 has changed into .

The original matrix has become upper triangular: the number highlighted in bold red in the final matrix are called the pivots. Now, notice how the original matrix can be represented as the product of a lower triangular matrix and the upper triangular matrix derived from Gaussian elimination:


the number in bold red in the lower triangular matrix are the row multipliers we have used in the Gaussian elimination. The factorization of a matrix A into the product of two triangular (Lower and Upper) matrices is called the LU factorization. This LU factorization is often used instead of the Gaussian elimination for the solution of large systems of linear equations. For example, suppose the matrix A for the linear system Ax = b can be factorized into an LU product; then the solution to L(Ux) = b can be obtained by defining y = Ux and by solving two systems in sequence:

1. Ly = b (solve for y by forward substitution)
2. Ux = y (solve for x by backward substitution)

The solution to the equation:			       L		       y		 =   b

  becomes:

Forward substitution phase (Ly = b):
						 L	   y    =  b











						          y


Backward substitution phase (Ux = y):
					         U	x    =     y












The advantage of the LU decomposition over the Gauss elimination is that once A is decomposed into LU, we can solve Ax = b for as many b vectors as we like. It is also normal practice to store the elements of both U and L in a single matrix L\U since it is understood that each of the diagonal elements of L is 1. For example, the L\U matrix for A is:



We provide two MATLAB functions lu_fact.m (LU factorization of a square matrix without row exchanges) and lu_solv.m (LU based solver of systems of linear equations) to solve the matrix equation Ax = b. The solution of the system is obtained by running the two functions in sequence:

LU = lu_fact(A)
x = lu_solv(LU,b)

[bookmark: OLE_LINK15][bookmark: OLE_LINK16]Alternatively we can use MATLAB intrinsic function lu:
[L,U] = lu(sym(A)) 	% symbolic factorization
[L,U,P] = lu(A)	% numerical factorization
P*A , L*U
inv(P)*L*U

where P is a permutation matrix such that the product PA is equal to the product LU. The solution to Ax = b is normally obtained with matrix division using the backslash operator:

x = A\b

However, this operator and also the more complex function linsolve actually work by solving the two triangular systems:

[bookmark: OLE_LINK19][bookmark: OLE_LINK20]y = L\(P*b)
x = U\y
x = U\(L\(P*b));

MATLAB offers also the function ilu for incomplete LU factorization. This function is most often used in the implementation of iterative methods, but is also useful to obtain a factorization without permutation of the rows:

[bookmark: OLE_LINK21][bookmark: OLE_LINK22][bookmark: OLE_LINK25]setup.type = 'nofill';
[L,U] = ilu(sparse(A),setup)
U = full(U), L = full(L)
y = L\b
x = U\y
[bookmark: OLE_LINK23][bookmark: OLE_LINK24]x = U\(L\b);

Very often matrices that arise in biochemical application are symmetric (i.e., the covariance matrix (CHAPTER 10)). If a matrix A is symmetric, then the LU factorization can be represented in the form:

A = LU = LDLT

where D is a diagonal matrix. For example consider the matrix A:



in this case:  		 

Notice how U can be obtained directly by left multiplying the transpose of L by a diagonal matrix D containing the pivots:


				U 		           D	                  LT

Thus, the LDLT factorization yields:


					      L			  D			LT

Based on this information, we can easily obtain the LDLT factorization of the symmetric matrix:
A = [2 3 1;3 1 1;1 1 2]; 

using the lu_fact function and the following matlab commands:

LU = lu_fact(A); U = triu(LU);
L = tril(lu_fact(A),-1)+eye(3);
D = diag(diag(U));

or directly using matlab ldl function:

[L,D] = ldl(A)

Clearly, we can use the LDL factorization to solve the matrix equation Ax = b. In this case the solution to L(DLTx) = b can be obtained by defining DLTx = y and by solving two systems in sequence:

1. Ly = b (solve for y by forward substitution)
2. DLTx = y 	   x = (DLT)-1y      x = (LT)-1D-1y  (solve for x by backward substitution)

These two steps correspond to the matlab commands:

y = inv(L)*b
y = L\b
x = inv(L')*(inv(D)*y)
x = L'\(D\(L\b))



SPECIAL TOPIC
Iterative methods. When the system of linear equations Ax = b becomes too large for ordinary Gaussian elimination a new class of methods becomes useful to find the solution: these are the iterative methods. In general, these methods consist of two steps:

1. Preconditioning of A: we look for a matrix S which is close to A, but simpler to work with. 

2. Iteration: knowing the matrix difference T = S-A  S-T = A we replace A with S-T, so we can rewrite the system of equations as:



We start with a guess  (i.e., a vector of 0s or 1s) and we solve iteratively:


 

                   ... and so on


until the residual r becomes less than an error we are willing to tolerate (ideally 0):



Of course an essential part of the method success is that the preconditioner S should allow an easy solution of the modified system. Some popular choices for S are:

J = diagonal part of A (this is the Jacobi method).
[bookmark: OLE_LINK26][bookmark: OLE_LINK27]GS = lower triangular part of A including the diagonal (this is the Gauss-Seidel method).
ILU = (approximate lower triangular) x (approximate upper triangular): this is the incomplete LU method based on the function ilu. The incomplete LU factorization produces L and U sparse matrices in which the small terms are replaced with 0s.

In general these methods work best for symmetric matrices in which the elements on the diagonal are larger than the non-diagonal elements, and may fail for non-symmetric matrices. As an example, consider the matrix equation:

[bookmark: OLE_LINK13][bookmark: OLE_LINK14]
						 A           x    =  b		
A = [2 3 1;3 1 1;1 1 2]; A = A'*A;
b = [3 2 1]'; x = A\b

[bookmark: OLE_LINK9][bookmark: OLE_LINK10]and apply the simple functions gauss_seidel or ilu_iter_solv:
function [ x,r,S,T,iter ] = gauss_seidel( A,x0,b,tol )
 
S = tril(A); 
T = S-A;
r = b-A*x0;
 
iter = 0;
while norm(r) > tol
iter = iter + 1;
x1 = S\(T*x0+b);
r = b-A*x1;
x0 = x1;
end

x = x1;
end

tol = eps^(1/3); x0 = [0 0 0]';
[bookmark: OLE_LINK28][bookmark: OLE_LINK29][ x,r,S,T,iter ] = gauss_seidel(A,x0,b,tol)
[ x,r,S,T,iter ] = ilu_iter_solv(A,x0,b,tol,0.1)

While useful to understand the general principle behind iterative methods the Gauss-Seidel and incomplete LU methods are considered obsolete to solve large systems of linear equations. MATLAB has several advanced functions implementing iterative methods, that are optimized for different types of matrices:

[bookmark: OLE_LINK30][bookmark: OLE_LINK31][bookmark: OLE_LINK34][bookmark: OLE_LINK35]Conjugate gradients (symmetric positive definite matrices):
[bookmark: OLE_LINK44][bookmark: OLE_LINK45][x,flag,relres,iter,resvec] = cgs(A,b)

[bookmark: OLE_LINK32][bookmark: OLE_LINK33][bookmark: OLE_LINK36][bookmark: OLE_LINK39][bookmark: OLE_LINK40][bookmark: OLE_LINK43]Biconjugate gradients (symmetric positive definite matrices):
[bookmark: OLE_LINK46][bookmark: OLE_LINK47] [x,flag,relres,iter,resvec] = bicg(A,b)

[bookmark: OLE_LINK41][bookmark: OLE_LINK42]Generalized minimum residual method (square non-symmetric matrices):
[bookmark: OLE_LINK48][bookmark: OLE_LINK49][bookmark: OLE_LINK50] [x,flag,relres,iter,resvec] = gmres(A,b)

Minimum residual method (symmetric but not necessarily positive definite matrices):
 [x,flag,relres,iter,resvec] = minres(A,b)

Because of their importance in current computational strategies to find the minimum of functions, we describe here in more detail the conjugate gradients methods, which are specifically designed to work with positive definite matrices. This is a very important class of symmetric matrices that will be discussed in a later chapter, but for now it suffices to say that one important features of these matrices is that upon Gaussian elimination (or LU factorization) all the pivots are positive, and the product  is a positive scalar for any  vector: 

Consider the quadratic scalar function:


where A is symmetric and positive definite. 

We want to find the value of  for which the function  acquires its minimum value. Differentiating with respect to x we obtain the gradient of :


Because  is at its minimum when  (First Order Optimality Condition, FOC), minimizing  is the same as solving. 

Here we obtain a positive definite matrix A:
A = [2 3 1;3 1 1;1 1 2]; A = A'*A 
b = [3 2 1]'
x = A\b

Here we represent  as isosurfaces:
x1 = [-.3:.05:0.6]; x2 = [-.4:.05:0.4]; x3 = [-.5:.05:0.5]; 
npoints1 = length(x1); 
npoints2 = length(x2);
npoints3 = length(x3); 
 
X = zeros(3,npoints1*npoints2*npoints3); 
E = zeros(1,npoints1*npoints2*npoints3);

x and y number of points are inverted in this array to match the ordering produced by meshgrid later on

E3 = zeros(npoints2,npoints1,npoints3);
 
n = 0;
for i = 1:npoints1
    x = x1(i);
    for j = 1:npoints2
        y = x2(j);
        for k = 1:npoints3
            z = x3(k);
            n = n+1;
            X(:,n) = [x;y;z];
            E(n) = 0.5*X(:,n)'*A*X(:,n) -b'*X(:,n);

            i and j indices are inverted here to match the ordering produced by meshgrid

            E3(j,i,k) = E(n);
        end
    end
end
 
Isosurface plot
Energy_Function = figure;
set(gcf,'Unit','Normalized','Position',[0 0 0.6 0.8]);
 
[Xg, Yg, Zg] = meshgrid(x1,x2,x3);
p0 = patch(isosurface(Xg,Yg,Zg,E3,1.8));
isonormals(Xg,Yg,Zg,E3,p0)
p0.FaceColor = 'red';
p0.EdgeColor = 'none';
p0.FaceAlpha = 0.05;
grid on
box on
hold on
 
[Xg, Yg, Zg] = meshgrid(x1,x2,x3);
p1 = patch(isosurface(Xg,Yg,Zg,E3,.9));
isonormals(Xg,Yg,Zg,E3,p1)
p1.FaceColor = 'red';
p1.EdgeColor = 'none';
p1.FaceAlpha = 0.075;
 
p2 = patch(isosurface(Xg,Yg,Zg,E3,.3));
isonormals(Xg,Yg,Zg,E3,p2)
p2.FaceColor = 'red';
p2.EdgeColor = 'none';
p2.FaceAlpha = 0.15;
 
p3 = patch(isosurface(Xg,Yg,Zg,E3,-.1));
isonormals(Xg,Yg,Zg,E3,p3)
p3.FaceColor = 'red';
p3.EdgeColor = 'none';
p3.FaceAlpha = 0.3;
 
p4 = patch(isosurface(Xg,Yg,Zg,E3,-.32));
[image: ]isonormals(Xg,Yg,Zg,E3,p4)
p4.FaceColor = 'red';
p4.EdgeColor = 'none';
p4.FaceAlpha = 0.4;
 
p5 = patch(isosurface(Xg,Yg,Zg,E3,-.36));
isonormals(Xg,Yg,Zg,E3,p5)
p5.FaceColor = 'b';
p5.EdgeColor = 'none';
p5.FaceAlpha = 0.45;
 
daspect([1,1,1])
view(24.1,22); axis tight
camlight 
lighting gouraud
xlabel('X');ylabel('Y');zlabel('Z');
 
Function minimum
Emin = 0.5*x'*A*x -b'*x;
scatter3(x(1),x(2),x(3),80,'g','filled');



Gradient methods start with an initial vector  and compute a refined solution at each cycle:




                   ... and so on


The step length  is chosen so that  minimizes in the search direction . This means that  must tend to satisfy:



Introducing the residual:



and pre-multiplying both sides by  we find :



The obvious choice for the search direction  is the negative of the gradient:



This choice corresponds to the method of steepest descent (as it wipes out the residual for the current value of ). However, while providing the correct result, this method converges very slowly, because consecutive searches tend to be in approximately the same direction. To avoid this problem, the conjugate gradient method uses a modified search direction:



The constant  is chosen so that the two successive search directions are not interfering with each other; these directions are called conjugate or A normal because:



Substituting for  we obtain:





The following is a flowchart of the conjugate gradients algorithm:

Start with any x0

Use the steepest descent as 1st step


 

Loop with k = 1 to n where n 
is the number of variables. 

 
 


If  exit loop (convergence criterion = error tolerance is met)





which can be easily implemented as a small function:

function [ x ] = conj_grad(A,x,b,tol)

if nargin<4
    tol = 1e-9;
end
 
n = length(b);
r = b - A*x;
s = r;
 
for i = 1:n
    As = A*s;
    alpha = (s'*r)/(s'*As);
    x = x + alpha*s;
    r = b - A*x;
    if norm(r) <= tol
        return
    else
        beta = -(r'*As)/(s'*As);
        s = r + beta*s;
    end
end

x0 = [0 0 0]'
[x,r,i] = conj_grad(A,x0,b)

It can be shown that not only the search direction s1, s2, s3, . . . sn are conjugate, but that the residual vectors r1, r2, r3, . . . rn, are mutually orthogonal:



In terms of speed, the conjugate gradients method is not as efficient as direct methods like Gaussian elimination in the solution of small sets of equations. However, it becomes unbeatable with large, sparse systems (where most of the elements of A are zero). Furthermore, since it reaches the exact solution in n cycles, it's not really an iterative method. In practice, with large systems of equations, and if the starting vector is not too far from the solution, convergence is usually achieved in even less than n iterations.

We will return to the conjugate gradients method in CHAPTER 17, when we discuss current strategies for unconstrained minimization of non-linear functions.


PRACTICE
1. Use the two provided MATLAB functions lu_fact.m (LU factorization of a square matrix) and lu_solv.m (LU based solver of systems of linear equation) in sequence to solve the matrix equation Ax = b, where:
A = [3 7 8;1 4 7;2 2 4];
b = [59 34 22]';

2. Carry out the LDL' factorization of the symmetric matrix:
A = [2 3 1;3 1 1;1 1 2];
 
and show that L*U and L*D*L' give indeed the same result. 

3. Using code lines from lu_solv.m write a MATLAB program that will solve the matrix equation Ax = b with:
b = [5 7 3]';
 
using the LDL' factorization. Remember that in this case the logical steps of the solution are going to be:
1. Ly = b
2. DL'x = y => L'x = y/D

[bookmark: _GoBack]These correspond to the MATLAB commands:
y = inv(L)*b
x = inv(L')*(inv(D)*y)
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