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ENG06 PROJECT #2  

 

COLLABORATION POLICY:   

You need to form a team of two to complete the project.  You are only allowed to talk and collaborate 
with members within your team.   Team members are expected to equally participate, and 
collaboratively work towards the completion of the project.  Other than contacting the teaching 
assistants for clarification, you may not seek the assistance of other persons.   

1.1 LOGISTICS: 

1.  No later than noon, on August 24 each team must declare the members of the team.  ONE 
electronic message should be sent to Stanley with the subject line:  Engineering 6 Project 
Team.  The body of the message should contain i) three suggested team names (from which 
one will be assigned to you), and ii) the names of the team members.  

2. By 12 noon on Wednesday, September 7 the projects are due (no late submissions will be 
accepted).  

3. During the lab period on September 7, each team will be scheduled to demonstrate their 
effort.  The times will be assigned no later than end of September 5.   

1.2 GRADING CRITERIA: 

The projects are open ended.  As long as your program can perform the assigned tasks, there will be 
no correct or wrong approaches.  Certainly there will be more acceptable and attractive solutions, 
and that will be judged in comparison with competing solutions.    

The deliverables are: i) a report, ii) an electronic submission of all programs and supporting files 
(zipped into a folder with the name of your team), and iii) a demonstration.  

Bottom line will be, if we cannot get your program to execute, it will not be graded.  In all cases it 
will be essential that you submit a complete set of files to test your program.   It will also be 
important to give clear instructions of how to run your program.   This could be done in various 
ways.  One good way to document how your program executes is to give an example case and the 
results.    

The breakdown of grading among project will vary.    The grades to each team member will be 
adjusted according to how the project tasks were delegated and who was responsible for what 
aspects of the project.   How this will be determined is the following.  In addition to interviews and 
information gained during the demonstration, each project will allocate at least 10% of the grade to 
a section that must be included as an Appendix A.  Appendix A must contain: 

 A table with the breakdown of the tasks to complete the project, and who was responsible 
for what part of the project.  The intent here is to determine who did what to implement the 
project.  While it is perfectly reasonable that some tasks can be completed jointly, it is 
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unrealistic to claim that that everyone work together on all aspects of the project equally.   If 
all tasks are attributed equally, it will be viewed as unrealistic and come under specific 
scrutiny.   

 The expectation is that each team member must take responsibility for a specific aspect of 
the project and being able to explain what their contributions to the project have been.  This 
does not mean that person is solely responsible for working on it – it means that the person 
takes the lead on its execution.    

 In Appendix A each member must provide a brief personal summary of what the person’s 
involvement and contributions in the project.   Before the project is submitted, the 
summaries must be provided to all members for review and comment.  Appendix A must 
conclude with the following statement:  

“All team members have read the task summaries contained in this report and have 
been given an opportunity to comment. “  

1.3 SUBMISSION REQUIREMENTS:  

Each project submission must have a project report that contains any relevant material deemed 
essential, and it must contain an Appendix A as described previously.  The first page of the report 
must contain the team name and the names of all members.  The front page MUST contain the 
following  statement: 

“The project was completed exclusively by the members of the team.  All critical external 
resources have been cited.  We have given credit any pieces of information that are not 
common knowledge which include another person's idea, opinion, or theory, any facts, 
statistics, graphs, drawings or programming code.” 

For the purposes of this project, any information provided in this problem statement or in course 
notes and lectures should be consider common knowledge.   

If it is discovered that you have borrowed or used material from a source that is not credited, it will 
be consider plagiarism and the case will be turned over to Student Judicial Affairs.  

The report must be saved a PDF document with the name of the team and report (e.g. if the team 
names is Foxes, then the report name should be Foxes_Report.pdf).     

Each team will submit files in one zipped folder (do not use any other type of file compression 
technique or format) to SmartSite.  With the exception of the project report that must be a PDF, all 
other files must be compatible with your Matlab program.   Be sure to include .m files, .fig.wav and 
any images your program needs to run.  If your program doesn't run, you won't receive credit!     

All material that must be reviewed for the project must be submitted by the project deadline.  No 
other supplement information or submissions will be accepted after the deadline.  

1.4 DEMONSTRATION FORMAT 

1) Each team will interactively present their solutions to the project by demonstrating how the 
code is executed.   

2) Only programs submitted by the deadline must be used.    
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3) You have the option of using a laptop provided by your team or use a workstation in the lab.  
If you choose the latter option, bring your programs on a memory stick.  

4) All members must participate in the presentation.   How this will be done will be up to you.   
5) One person must not dominate the presentation.  
6) The assumption is that all members have a reasonable familiarity with the project, even if 

they have not been the lead person on that specific topic.  During presentation any member 
of the team can be specifically asked to answer a question  

 

2 BACKGROUND FOR PROJECT:  

The first concept to clearly understand is how a point on the earth is represented by latitude and a 
longitude coordinate pair.   

North

South

Prime Median

 

FIGURE 1. THE LATITUDE IS REPRESENTED BY THE ANGLE  . THE LONGITUDE IS REPRESENTED BY THE 
ANGLE  . 

WHAT IS LATITUDE?1 Latitude, or the Y coordinate, is the distance from the equator.  
Latitude lines run east and west (horizontal) along the surface of the earth.  Every point above the 
equator is in the "+" (positive) range and anything below the equator is in the "-" (negative) range.  
Coordinate values are preceded by a + or - sign.  Think of the standard X/Y chart and think of 
latitude as being a point along the vertical Y axis.  Every area in the United States will have a 
positive (+) latitude or Y coordinate.  Any point on the equator has a latitude of zero while the north 

                                                             
1 Adapted from www.al911.org/wireless/XYTUTORP.DOC 
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pole is +90 and the south pole is -90.  Each degree of latitude is divided into 60 equal parts called 
minutes and each minute can be further divided into 60 seconds. On the surface of the earth, one 
degree of latitude is about 69 miles (110 kilometers).  Because the earth is not quite a perfect 
sphere, the distances get slightly greater toward the poles where there is a slight flattening of the 
earth. 

 

              Y-axis 

                 +90 

                                  

                 -90 

 Points above and below equator on Y-axis 

 

WHAT IS LONGITUDE? Longitude, or the X coordinate, is the distance from the Prime 
Meridian which is in Greenwich, England a borough of London. The earth is divided into two parts, 
or hemispheres, of east and west longitude.  Think of the earth as a globe that is divided into 360 
equal slices (180 west and 180 east of Greenwich).  The lines between the slices on the globe are 
called meridians, thus the term "prime meridian" for the meridian that is the starting point, 
represented by +000.000000 longitude.  All points along the prime meridian have a longitude of 
+000.000000. Longitude lines run north and south along the surface of the earth.  Anything east of 
the Prime Meridian is in the "+" (positive) range and anything west of the Prime Meridian is in the 
"-" (negative) range.  Think of the standard X/Y chart and the longitude being a point on the 
horizontal X axis.  All areas within the United States will have a negative (-) longitude or X 
coordinate.   The space between two meridans is greatest at the equator, about 69 miles (111 
kilometers).  This space narrows as the meridians approach the north and south poles, so the 
distance between meridians is not constant.  For example, a degree of longitude at New Orleans, LA 
is about 60 miles (97 kilometers) while at Winnipeg, Canada, a degree of longitude is less than 45 
miles (72 kilometers). 

  

North Pole +90.000000  latitude 

Equator is +00.000000 
latitude 

South Pole -90.00000  latitude 

0 
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                                                                   X-axis 

 

 

                            -180                                     0                                      +180 
                                              Points east and west of Prime Meridian on X-axis 

2.1.1 MAP PROJECTIONS: 

Mapping longitudinal and latitude coordinates onto a plane causes a distortion.  This occurs for the 
same underlying reason that the time it takes to walk “around the world” near a pole is significantly 
shorter that if the person decides to walk at the equator. For example, a Cartesian plot of a 
landmass based on longitudinal and latitude distorts the area.  If an area is plotted close to a pole, 
the area will look significantly larger than if the area was plotted at the equator (for the same 
reason,).    For this reason, map projections are used to display longitudinal and latitude 
information (read the Wikipedia article on map projections).   There are a large variety of 
projections, because it depends on what information the user wants to display.  In this project you 
will use the equirectangular and the Mercator projections.   

 

Prime Meridian has a longitude of   +000.000000 

Points east of the Prime 
Meridian have a POSITIVE 
longitude 

Points west of the Prime 
Meridian have a 
NEGATIVE longitude 

http://en.wikipedia.org/wiki/Map_projection
http://en.wikipedia.org/wiki/Equirectangular_projection
http://en.wikipedia.org/wiki/Mercator_projection
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FIGURE 2.  EQUIRECTANGULAR PROJECTION OF THE WORLD. SOURCE.  

 

 

FIGURE 3. MERCATOR PROJECTION OF THE WORLD BETWEEN 82°S AND 82°N. SOURCE .  

 

 

  

http://en.wikipedia.org/wiki/Equirectangular_projection
http://en.wikipedia.org/wiki/Mercator_projection
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2.1.2 MAP INFORMATION AS AN ARRAY OF STRUCTURES: 

The information of the states will be provided in an array of structures.  Load this structure in with 

>> load states 

 

The format of the array of structures is the following: 

Field Name Data Type Description Comments 
Geometry String One of the following 

shape types: 'Point', 
'MultiPoint', 'Line', or 
'Polygon'.For a 'PolyLine', 
the value of the Geometry 
field is simply 'Line'. 

For a 'PolyLine', the 
value of the Geometry 
field is simply 'Line'. 

BoundingBox 
 

2-by-2 numerical 
array 
 

Specifies the minimum 
and maximum feature 
coordinate values in each 
dimension in the 
following form: 
 

(
                 

                 
) 

 

Omitted for shape 
type 'Point'. 
 

X, Y, Lon, or Lat 1-by-N array of class 
double 
 

Coordinate vector.  
 

 

Attr 
 

String or scalar 
number 
 

Attribute name, type, and 
value. 

Optional. There are 
usually multiple 
attributes. 
 

 

The fields of the structure can be seen by typing: 

>> states 

states =  

 

51x1 struct array with fields: 

    Geometry 

    BoundingBox 

    Lon 

    Lat 

    Name 

    LabelLat 

    LabelLon 

    PopDens2000 
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Typing  

>> AllGeometry={states(:).Geometry}' 

 

will indicate that the first position of the structure always contains 'Polygon'.  If one only need to 
inspect the entries, the easiest is to use the Variable Editor.  More often, one want to use the 
variables in a program.  Let us review how to extract entries from the array of structures .  For 
example, focusing on the BoundingBox of the second:  

>> entry=2; BoundingBoxExtract={states(entry).BoundingBox};  

BoundingBoxExtract 

 

BoundingBoxExtract =  

 

    [2x2 double] 

 

This shows that Bounding Box is a cell array, so the elements are extracted using:  

>> minLong= BoundingBoxExtract{1}(1,1) 

maxLong= BoundingBoxExtract{1}(2,1) 

minLat= BoundingBoxExtract{1}(1,2) 

maxLat= BoundingBoxExtract{1}(2,2) 

 

minLong = 

 -171.8500 

 

maxLong = 

 -129.9800 

 

minLat = 

   52.8200 

 

maxLat = 

 

   71.4000 

 

And this indicates that the limits of the longitude and the latitude of the state described in the 
second record.  The next two entries contain the Longitude and Latitude coordinates of a polygon 
describing the outline of the state.   Plot the boundary associated with the second entry: 

plot(states(2).Lon, states(2).Lat) 
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Inspect the values in states(2).Lon, states(2).Lat and you will note that they contain embedded 
NaNs to delimiting polygon parts.  Which state is this?  The Name entry contains the name of the 
state 

>> states(2).Name 

 

ans = 

 

Alaska 

 

It is useful to extract the indices programmatically: 

 names = {states.Name}; 

 indexHawaii = strmatch('Hawaii',names); 

 indexAlaska = strmatch('Alaska',names); 
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2.1.3 CALCULATION OF AREA OF A POLYGON ON A SPHERE: 

You will need to calculate the area of a polygon on a sphere that is described by a polygon described 

by a set points of latitude φ and longitude λ.  For the purpose of this project, we will assume that 

earth is a perfect sphere that has a radius of 6367.5 km.2   Given an arbitrary set of latitude and 

longitude pairs representing points on a closed polygon, how is the surface area on the sphere 

enclosed by the polygon calculated?  First you need to understand fully how spherical coordinates 

are used to calculate surface area (take the time to become fully versed in the topic by watching this  

video - if you do not “get” the underlying concepts, you will become lost in the rest of the project.)  

R df
R cosf dl

 

FIGURE 4.  SURFACE AREA INTEGRATION BY LATIDUNAL STRIPS. 

EQUAL LATITUDINAL APPROACH:  This can be done by integrating the contributions from equal 

latitudinal strips. From this knowledge, it follows that the area of each latitudinal strip will be 

(Rcos( )(  -  ))(Rd ), where   is the latitude,    and    are the starting and ending longitudes, 

and all angles are in radians.  To obtain the total surface area, all the areas of latitudinal strips are 

summed.   

To see how this works,  let us use this approach to calculate the surface area described by one 

eighth of a sphere, or in terms of latitude and longitude, the polygon described by the vertices  

            , (        
 

 
) ,      

 

 
    

 

 
 , and            .  One eighth of a 

sphere,has a surface area of so the answer should be              .  Let us first calculate the 

area by performing the surface area calculation in close form:  

  ∫ ∫        
   

 

 

    

   
 

 

    
         (

 

 
  ) (   

 

 
     )       . 

 

                                                             
2 Wolfram Alpha 

http://www.mathvids.com/lesson/mathhelp/596-lecture-26-spherical-coordinates-and-surface-area
http://www.wolframalpha.com/
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The earth radius is R= 6367.5 km, and so the surface area is: 

>> pi*R^2/2 

 

ans =  6.3688e+007 

 

Now, let us do the integration numerically for d        , then: 

>> R=6367.5 ; lambda0=0; lambda1=pi/2; phi0=0; phi1=pi/2; 

>> inc=0.00001; del=[ phi0:inc: phi1];  

>> cosdel=cos(del)*inc; sum((R^2*( lambda1- lambda0))* cosdel) 

 

ans =  6.3688e+007 

 

The answer is correct.  Let us extend the latitude-strip approach to a general polygonal region.  Let 

us focus on a 4 sided polygon.  If two sides of the four sided polygon are described by two latitudes 

and two longitudes, then using the latitude-strip approach, the area calculation is straightforward 

extension of the previous idea.  If the polygon is more complicated, as the example shown below, 

then before you can apply the latitude-strip approach, the constant latitude strips need to be 

generated.  From the given four points (the blue dots), a more finely polygon is created3 described 

by constant latitude coordinates (represented by the red dots), and then surface area can be 

calculated.   

f0

f1

f2

fN

fN-1

fk

f1

f2

 

 

Let us look at possible complications in calculating of the area of a state. Run the code: 

                                                             
3 Piecewise linear interpolation could play a role here.   
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>> load states;  subplot(1,2,2);  

>> num=11; plot(states(num).Lon, states(num).Lat);title('Hawaii'); 

>> subplot(1,2,1);  

>> num=41; plot(states(num).Lon, states(num).Lat);title('South Dakota'); 

 

 

If the state has a simple outline, such as South Dakota, calculating the area will be accurate even if 

the finer detail in the south west corner is not accurately captured.  South Dakota is also is a 

continuous region.  In contrast, Hawaii, is more challenging.  Hawaii consists of separate regions, so 

this needs to be handled.  The small details of each of island will need to be captured.  If the 

latitude-strip approach is used, one will need to handle an additional complication seen in the 

island of Oahu.   At the south side, the outline folds back onto itself.  Handling such complications, 

using the latitude-strip, becomes non trivial.   
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MONTE CARLO APPROACH:  An alternate approach to calculate the surface area is to use the 

Monte Carlo surface integration approach that was discussed in class.   In this approach the polygon 

is placed within a reference region that has a known surface area.  Within this reference region, a 

large number of points are randomly placed, and from the number of points that fall within the 

polygon the area can be calculated. Matlab has built-in routine inpolygon to determine if a point 

falls with a polygonal region.  For a polygonal region described by latitude and longitude, a 

reference region could be a bounding box polygon described by two latitudes and two longitudes 

(similar to the bounding box in the mapping structure described in the previous section), for which 

the surface area can be easily calculated using the latitude-strip.  The general idea is shown below.   

 

CONSTANT AREA APPROACH:  In the next section you will learn how to perform a surface 

integral over a two dimensional function.  The ideas in that section could be applied to devise a 

technique to calculate the surface area from a large number of small patches     =    =    See the 

discussion at the end of the Surface Integral section for more details.  

2.1.4 SURFACE INTEGRALS 

In this project, you will write a program to calculate the solar power incident in a specific month 
onto a selected area on the earth.  This requires calculating the surface integral 

  ∬         ∬           ∫ ∫             
  

  

  

  

      

where        is the solar radiation in Watts/m2 onto a region.  The information on        is 
provided in a two dimensional table       

  where the    points and    points are in 1 

degree increments.   Only if the        does not vary rapidly over the area of integration, then the 
term        is a constant and can be pulled outside the integral, and then  

    ∫ ∫             
  

  

  

  
         ∫ ∫            

  

  

  

  
   

http://eosweb.larc.nasa.gov/sse/global/text/22yr_swv_dwn.
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Note: The approximation is only valid if        is a constant with respect to       Typically, 
over the area of interest,        will not be a constant, but if the area is divided in small enough 
patches                      such that      

     is constant, then 

    ∫ ∫             
  

  

  

  
      ∑ ∑    

 
   

 
        

While the solar radiation is not constant over a surface area, it is expected to vary slowly over 

typical areas of interest.  This can be verified by plotting the solar radiation as a function of 

longitude and latitude.  For example, using the data in the two dimensional table       
  plot the 

data that fall within the bounding box             and                will span Texas.   

Let us assume you need to calculate the total power incident onto Texas for a specific month.   

Looking at the map of Texas below, and considering that the      
 data is provided is on a “coarse” 

1 degree grid, how do one deal with the parts of Texas that do not completely fall onto the 1 degree 

grid?  And, how can we get a numerical approximation of the incident power?   

The approach is that we will regrid the data to a grid that is finer that the 1 degree grid.   But, first 

let us generate a two dimensional finely spaced grid and identify only those points in the grid that 

fall within Texas.  We make use of the function inpolygon to determine if a given point is inside a 

given polygon:   

“IN = inpolygon(X,Y,xv,yv) returns a matrix IN the same size as X and Y. Each element of IN 

is assigned the value 1 or 0 depending on whether the point (X(p,q),Y(p,q)) is inside the 

polygonal region whose vertices are specified by the vectors xv and yv.”4  

First we calculate a spatial array [  ]  and [  ]  that spans the bounding box             and 

               with increments much smaller than 1 degree.  Let say     =    =   degrees.  

Then, using the polygon that defines Texas, we ask which points in [  ]  and [  ]    fall inside Texas, 

and we set those points to 1 to create a two dimensional array [  ].  The next step is to make a 

correction for the curvature of the earth, since a square defined by     =    = 0.1 in North  Texas 

will have a different area than a square defined by     =    = 0.1 in  South  Texas.    After this 

correction is figured out, we change the unity entries of [  ] with the appropriate scaling factor and 

creating a new matrix [  ].  

Next we turn our attention to the      
 data which is on a too coarse a grid.  We use two 

dimensional interpolation, using for example the function interp2, to regrid the      
 data to the 

same grid as spatial array [  ]  and place the result in a two dimensional array [  ].   Now you set 

all the points in [  ] that fall outside of Texas to zero, by using matrix manipulation and the 

information in [  ]  and create a matrix [ ]  that contain the entries         for only the points that 

fall within Texas.   With this result, we simply sum all the entries in [ ] to obtain the final result.   

 

                                                             
4 Matlab Documentation 

http://eosweb.larc.nasa.gov/sse/global/text/22yr_swv_dwn.
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How does one use the above approach to calculate the area of a state?  Let us, revisit a derivation of 

the surface area of a sphere.  The surface area of a sphere can be calculated by solving the integral 

  ∫ ∫        
     

    

   
 

 

    
 

 

           (   
 

 
    ( 

 

 
))      . 

The important observation is that it solves a surface integral like  

  ∬         ∬           ∫ ∫             
  

  

  

  

      

with         .  
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3 PROBLEM STATEMENT: 

3.1.1 GENERAL COMMENTS 

1. While specific instructions are given about the assumptions that should be made, in the 
event that additional assumptions are needed, make sure the assumptions are clearly 
documented in the material that you hand in. 

2. Throughout the project, all results must be displayed in metric units.   

3.1.2 INPUTS  

You are given four files:    

1. An array of structures with the name states, which is loaded in by typing “load states”, that 
has the same structure as described in the section “Map Information as an Array of 
Structures”.  

2. An Excel file StateInfo.xlsx, which contains the following information: 
 

State 
 

Land 
Area  
miles sq 

Water 
Area 
miles sq 

Total 
miles sq Capital 

 

Lat Cap Long Cap 

Cost of 
Solar 
Electricity 
cent/kWh 

Alabama  50744 1675.01 52419.02 Montgomery 32.36154 -86.2791 9.19 
Alaska  571951.3 91316 663267.3 Juneau 58.30194 -134.42 15.93 
Arizona  113634.6 363.73 113998.3 Phoenix 33.44846 -112.074 10.08 
Arkansas  52068.17 1110.45 53178.62 Little Rock 34.73601 -92.3311 7.25 
: : : : : : : : 
Wyoming  97100.4 713.16 97813.56 Cheyenne 41.14555 -104.802 6.49 

 
3. An Excel file Cities.xlsx, which contains the following information: 
 

State Lat Long City 
Alabama 30.63 88.07 MobileAeros 
Alabama 30.68 88.25 Mobile 
Alabama 31.28 85.72 FortRucker 
Alabama 31.32 85.45 Dothan 
Alabama 31.87 86.02 Troy 
Alabama 32.3 86.4 Montgomery 
: : : : 
Wyoming 44.55 110.42 Yellowstone 
Wyoming 44.77 106.97 Sheridan 

 
4. Insolation is a measure of solar radiation energy received on a given surface area in a given 

time. Insolation is also known as total or global solar radiation.  The average insolation, as a 
function of latitude and longitude, calculated as the   22-year Monthly & Annual Average of 
the amount of electromagnetic energy (solar radiation) incident on the surface of the earth, 
in units of  kWh/m2/day is found here (you  are given a text file with this information).  The 
conversion into other units are given in the Table 1.  

http://en.wikipedia.org/wiki/Insolation
http://eosweb.larc.nasa.gov/sse/global/text/22yr_swv_dwn
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5. TABLE 1. CONVERSION FACTOR (MULTIPLY TOP ROW BY FACTOR TO OBTAIN SIDE COLUMN). 

 W/m2 kW h/(m2 day) sun hours/day kWh/(m2 y) 
W/m2 1 41.66666 41.66666 0.1140796 

kW h/(m2 day) 0.024 1 1 0.0027379 
sun hours/day 0.024 1 1 0.0027379 

kWh/(m2 y) 8.765813 365.2422 365.2422 1 
For use in this project, the information in the two dimensional table  has been reformatted 
into a textfile SolarRadioation.txt  

CAUTION:  You must assume that the format of the array structure states , StateInfo.xlsx ,  
Cities.xlsx and SolarRadioation.txt will stay the same, yet the content can change. The array 
structure in states and StateInfo.xlsx contain information for each state in the United States and 
the District of Columbia.  While one reasonably could assume the number of states will not 
change, your program should work even if the number of states changes.  Also, the information 
contained in the fields can be modified by user at any time.  The number of entries in the file 
Cities.xlsx can definitively change, as more cities are added.  This means that the manner in how 
you obtain, extract and process the information from these sources must be independent of the 
number and content of the entries, but should be format specific.   

 

3.1.3 TASK #1 

From the information in the states, calculate the land area of all of the states and compare your 
calculations with the information contained StateInfo.xlsx.   

1. First you should develop at least two approaches to calculate the surface area from a polygon 
described by longitude and latitude points on a sphere.  For example, the first approach could 
combine the Equal Latitudinal and the Monte Carlo approaches.  The second approach could be 
the Constant Area Approach.  Make sure that you test your area calculations against known 
results first (show these tests in the final report) – and then apply it to state geometries.   In 
your report describe your test examples, and then use Alaska and California as an example of 
representative output.  

2. Comment on the numerical area calculations for each state in the United States and the District 
of Columbia.  Display your result graphically in a manner that is clear.  From the graphical 
representation it should be clear if your area calculations, using the given boundaries correlate 
to the area of the total state or just the land area.   Show your results in the final report.  

3. Create a simple GUI from which the user selects a state, and then the program calculates the 
area using the two approaches in Task #1.1, display the results, as well as the area information 
in StateInfo.xlsx.  All area results should be displayed in in km2.   

 

  

http://eosweb.larc.nasa.gov/sse/global/text/22yr_swv_dwn.
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3.1.4 TASK #2 

The information in the array of structures states must be combined with the information in 
StateInfo.xlsx and Cities.xlsx, to create a new array of structures call newstates.  The program needs 
to read in the information and process it using a constructor function to create the array of 
structures newstates that must have the following cell fields: 

N x1 struct array with fields: 
    Geometry 
    BoundingBox 
    Lon 
    Lat 
    Name 
    LandArea 
    WaterArea 
    Capital 
    CapLat 
    CapLon 
    CostElec 
    Cities 
    CitLat 
    CitLon 
 

3.1.5 TASK #3 

In this task you will display map information using the newstates structure defined in Task #2.  

1. Create program that uses the information contained in newstates to  
1.1. draw a equirectangular projected  map of a region specified by a four sided polygon 

described by {                       }  
1.2. display the location and the names of all state capitals in the region, and  
1.3. indicate the position of all the cities in the region (do not display the city names).   
In your report use as a bounding box that include California as an example of representative 
output.  

2. Extend the program written in Task 3 Part 1 to create a GUI that will 
2.1. display a map of the US using a Mercator projection, including Hawaii and Alaska (displays 

as insets) 
2.2. let the user interactively select a region to display.  In some manner the user needs to 

define a polygon.  You need to decide what the most convenient manner doing this will be.  
2.3. The selected region is displayed in a same manner as described in Task 3 Part 1.   

3. Now, modify the program written in Task 3 Part 2 to allow the user to hover over the map using 
the mouse and then the name of the city closest to the mouse position is displayed (if you 
cannot get the “hovering” to work,  as a backup approach, the user can click on the map).   

 

  

http://en.wikipedia.org/wiki/Equirectangular_projection
http://en.wikipedia.org/wiki/Mercator_projection
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3.1.6 TASK #4 

In this task, you will write a program to calculate the solar power incident in a specified month onto 
a selected area on the earth.   

  ∬         

1. Create a program that uses the information contained in newstates and the insolation database 
to display the solar radiation in W/m2  in a selected state for a specified month.  The 
information must be displayed as a color plot with a specified     =    =   degrees spacing.  
You should perform two dimensional interpolation, using for example the function interp2, to 
regrid the      

 data to the desired grid spacing  .  The plot should be generated using the 

Matlab function pcolor with interpolated shading.  The scale of the plot should be displayed so 
that it is clear what color correlates with what numerical value.  In your report use Alaska and 
Texas in March as an example of representative output.  

2. Based on the program developed in Task 4.1, calculate the total power in Watts incident onto a 
selected state.   
2.1. First write a test programs to calculate surface integrals.  

2.1.1.  Step 1:  Calculates a surface integral defined by a polygon on a planar surface, using 
similar input parameters as the surface integral that must eventually calculated on a 
sphere.   As a test case, you can a polygon that describes a square, and evaluate 

∫ ∫       
  

  

    
  

  

 

where         is function that can be easily integrated in close form (Hint: you can 
check your close form answers using Wolfram Alpha) .   Show these tests in the final 
report.  

2.1.2.  Extend the 2.1.1. approach to a spherical surface.  Select a suitable test case and 
report on the tests in the final report.  

2.2. With the programs developed in 2.1 in place, you can proceed.  Assuming that the whole 
state was covered by solar panels, how much will the state make in a given month if it sells 
the electricity, at the rates given in StateInfo.xlsx assuming that the efficiency of conversion 
of the solar panels is a given percentage.  In your report use Alaska and Texas in March as 
an example of representative output.  

3. Generalize the approach in Tasks 4.1-4.2, and write a program that accepts a four sided polygon 
described by {                       } from a  user, which could span multiple states in the 
United States, and calculate the same information as in Task 4.2 is calculated.   In your report 
use a bounding box that includes California and some surrounding states. Use March as an 
example of representative output.  

 

3.1.7 TASK #5 

This task combines the approaches used in the previous tasks to generate an interactive GUI which 

1. Displays a map of the US 
2. The user selects a region on the map. 
3. The selected region is displayed along with the capital of the states, and the cities in the state is 

identified by location and name as described previously) 

http://www.wolframalpha.com/
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4. The user then selects a four sided polygon within the region as well as a month.  The program 
displays the information as described in Task 4.3.   

 

You are in complete control in designing the GUI.  The GUI could have a single or multiple pages.  It 
should be possible for the user to seamlessly navigate the interface to, for example, reset the 
parameters and start all over without leaving the program.  

 

 


