
Engineering 6

Winter 2012

Homework 7 (all topics except GUI and classes)

Issue: Tuesday, February 14
th

 at 10am.

Due: Tuesday, February 21
st
 at 10am.

General Instructions:

• Submission Guideline: Zip all files into a single .zip file. Name it HW7_XXX.zip,

where XXX are your initials.

o See submission checklist below.

• For each problem, save the test script as test_HW7P#_XXX.m where # after P = the

problem number, and XXX are your initials.

• Use comments to designate each task of the problem within your script and to explain

your steps. Consult the MatLab Code Style Guide posted on SmartSite.

• Use the functions ‘disp()’ or 'fprintf' to display answers for each task.

• Do not leave semi-colons off of lines of code as a means to print

out answers.

• Check the honor pledge. Late submissions are not accepted.

Submission checklist: (A single .zip file)

- Problem 1: One MatLab script, containing all 3 tasks.

- Problem 2: One MatLab script, containing both tasks.

- Problem 3: One MatLab script. One function.

- Problem 4: One MatLab script.

Problem 1: Resistor Divider

A resistor divider circuit is shown below. R1 and R2 are resistors, ����� is the voltage of the

battery, and �� is the voltage of the node in between R1 and R2.

The voltage, �� changes depending on the values of R1 and R2. If R1 is equal to R2, then �� is

simply half of ����� (energy supplied by the battery is being evenly dissipated through the two

resistors). As R1 and R2 vary, �� also varies. The trends are described in the table below.

R1 R2 ��

Fixed Increasing Increasing (more energy dissipated by R2 than R1)

Fixed Decreasing Decreasing (more energy dissipated by R1 than R2)

Increasing Fixed Decreasing (more energy dissipated by R1 than R2)

Decreasing Fixed Increasing (more energy dissipated by R2 than R1)

The relationships described table above can be accurately predicted by the following formula:

�� � ����� ∗
 �2

�1 � �2��

Task 1 (2 pts.): If R1 is 1 kOhm and R2 is 1 kOhm, calculate �� using �����= 9 volts.

Task 2 (2 pts.): If R1 is 10 kOhm and R2 is 2 kOhm, calculate �� using �����= 9 volts.

Task 3 (2 pts.): Let R1 be a vector of resistances that ranges from 1 kOhm to 100 kOhm at steps

of 1 kOhm, and R2 is also an 100 element vector with resistances that ranges from 50 kOhms to

100 kOhms at equally spaced increments (hint: linspace()).

Calculate �� using the 100 element vectors, R1 and R2. Assume ����� is 9 volts. Write code to

plot �� , R1, and R2 on the same plot, using red, blue, and green, respectively.

Problem 2: Variable Resistor

A variable resistor changes the resistance across its terminals (terminals 1 and 2 shown below)

based on the control code set by the user.

The control code for a particular variable resistor can range from 0 to 255, at increments of 1,

while the resistance across the terminals varies from 60 to 10000 Ohms. The formula that

converts from control code to a resistance value is as follows:

����������	 � �������	���� ∗
10000 60256 � � 60

Task 4 (2 pts.): Write code (without using any loops) to compute the resistances for a sequence

of control codes that ranges from 0 to 255, at increments of 1.

Task 5 (2 pts.): In the resistor divider circuit shown previously in Problem 1, R2 is actually a

variable resistor with control code ranging from 0 to 255, at increments of 1 (and follows the

formula above). If R1 is a resistor with 5 kOhms of resistance, and ����� is 3 Volts,

1) Write code to calculate �� for all control codes (0 to 255).

2) Write code to plot �� (y-axis) versus control code (x-axis).

Problem 3: Converting Binary Numbers to Decimal Numbers

Numbers we use every day are known as decimal system, or base 10 (meaning the weight of

successive digits is 10) system. Additional numerical representations exist that use other bases.

For example, binary number representation is a base 2 system. Binary number representation is

typically used inside computers to represent numerical data.

Below is a table that illustrates the difference between binary and decimal systems. The top

table shows how to convert decimal number 2307 is constructed using weights. The bottom table

shows how binary number 1011 is represented, and how its numerical value is calculated.

Note: For both cases, the numerical value is calculated by taking the sum of the element-wise

multiplication between the entries in the Digit row, and the Weight row.

Base 10 (Decimal) representation of 2307

Digit 2 3 0 7

Weight 1000 (=10#) 100 (=10$) 10 (=10%) 1 (=10&)
Numerical value = 1000*2 + 100*3 + 10*0 + 1*7 = 2000 + 300 + 0 + 7 = 2307

Base 2 (Binary) representation of 4-bit binary number, 1011 (decimal value: 11)

Digit 1 0 1 1

Weight 8 (=2#) 4 (=2$) 2 (=2%) 1 (=2&)
Numerical value = 8*1 + 4*0 + 2*1 + 1*1 = 8 + 0 + 2 + 1 = 11

Again, as you can see, converting a binary number to a decimal number involves element-wise

multiplication of the weight and digit vectors, then summing the resulting vector.

Task 6 (1 pt.): For a “Base X” (X is 2 for binary system. X is 10 for decimal system) system, the

weight is simply a vector '(,where the exponent, k is a linearly decreasing vector, from N to 0,

where N is the number of bits-1. Example, for an 8-bit binary number, N will be 8-1=7.

Create a vector called weight that contains the weight for an 8-bit binary number.

Task 7 (1 pt): Write a function (name it “binary2dec”) that converts a binary (base 2) number

into a decimal (base 10) number. Your function will take one input argument, and return one

output. The input argument will be the binary number, and it will be a 1D vector. For example,

the binary number, 1111111 will be entered into your program as [1 1 1 1 1 1 1 1].

Test your function using the following 4 binary numbers.

 Binary Number (most significant

bit… least significant bit)

Equivalent

Decimal Value

No. 1 1 1 1 1 1 1 1 1 255

No. 2 0 0 0 0 0 0 0 0 0

No. 3 1 0 1 0 1 0 1 0 170

No. 4 0 1 0 1 0 1 0 1 85

Problem 4: Analog to Digital Converter

An Analog to Digital Converter (ADC) converts a (analog) voltage signal to a (digital) binary

number. The conversion from voltage to (digital) binary numbers depends on the ADC’s input

voltage range and the ADC’s resolution.

For example, an ADC with an input voltage range from 0 to 5 volts, with 10-bits of resolution is

shown in figure below. This ADC converts 0 volts at its input to a 10 bit binary number with all

zeros at its output, and 5 volts at its input to a 10 bit binary number with all ones at its output. An

example illustrating the conversion process is shown in red in the figure. 3 volts at the ADC

input is converted to ‘1001100110’ at the ADC’s output, which is 614 in decimal.

The above mapping relationship can be written as the formula below.

Voltage (analog) = Decimal number * 5 / 1024

Task 8 (2 pts.): Use the function you write in Task 7 to convert the first two binary numbers

from the table below. Then write code (without using any loops) to compute the equivalent

voltage for those two numbers using formula above. (FUNCTION)

 Binary Number (most significant

bit… least significant bit)

Equivalent

Decimal Value

No. 1 0 0 1 0 1 1 0 1 45

No. 2 0 1 0 1 1 1 0 0 92

No. 3 1 1 0 0 0 0 0 1 193

No. 4 1 1 1 0 1 1 1 1 239

No. 5 1 1 1 0 0 1 0 1 229

No. 6 0 1 1 1 1 1 0 0 124

No. 7 0 0 0 1 1 1 0 1 29

No. 8 0 0 1 0 1 0 1 1 43

No. 9 0 1 0 1 1 1 0 1 93

No. 10 1 1 0 1 1 0 1 1 219

No. 11 1 0 1 0 1 1 1 1 175

No. 12 0 1 0 1 0 1 0 0 84

Task 9 (2 pts.): First enter the 12 binary numbers into a 2-dimensional matrix. Then write code

(use a loop) to compute the analog voltages for the sequence of 12 binary numbers shown in

table above. Plot the sequence of 12 numbers.

