
ENG06 Summer 2010 Due: 12 noon on Wednesday, September 7

Version 2.0

ENG06 PROJECT #2

COLLABORATION POLICY:

You need to form a team of two to complete the project. You are only allowed to talk and collaborate
with members within your team. Team members are expected to equally participate, and
collaboratively work towards the completion of the project. Other than contacting the teaching
assistants for clarification, you may not seek the assistance of other persons.

1.1 LOGISTICS:

1. No later than noon, on August 24 each team must declare the members of the team. ONE
electronic message should be sent to Stanley with the subject line: Engineering 6 Project
Team. The body of the message should contain i) three suggested team names (from which
one will be assigned to you), and ii) the names of the team members.

2. By 12 noon on Wednesday, September 7 the projects are due (no late submissions will be
accepted).

3. During the lab period on September 7, each team will be scheduled to demonstrate their
effort. The times will be assigned no later than end of September 5.

1.2 GRADING CRITERIA:

The projects are open ended. As long as your program can perform the assigned tasks, there will be
no correct or wrong approaches. Certainly there will be more acceptable and attractive solutions,
and that will be judged in comparison with competing solutions.

The deliverables are: i) a report, ii) an electronic submission of all programs and supporting files
(zipped into a folder with the name of your team), and iii) a demonstration.

Bottom line will be, if we cannot get your program to execute, it will not be graded. In all cases it
will be essential that you submit a complete set of files to test your program. It will also be
important to give clear instructions of how to run your program. This could be done in various
ways. One good way to document how your program executes is to give an example case and the
results.

The breakdown of grading among project will vary. The grades to each team member will be
adjusted according to how the project tasks were delegated and who was responsible for what
aspects of the project. How this will be determined is the following. In addition to interviews and
information gained during the demonstration, each project will allocate at least 10% of the grade to
a section that must be included as an Appendix A. Appendix A must contain:

 A table with the breakdown of the tasks to complete the project, and who was responsible
for what part of the project. The intent here is to determine who did what to implement the
project. While it is perfectly reasonable that some tasks can be completed jointly, it is

Version 1.1

unrealistic to claim that that everyone work together on all aspects of the project equally. If
all tasks are attributed equally, it will be viewed as unrealistic and come under specific
scrutiny.

 The expectation is that each team member must take responsibility for a specific aspect of
the project and being able to explain what their contributions to the project have been. This
does not mean that person is solely responsible for working on it – it means that the person
takes the lead on its execution.

 In Appendix A each member must provide a brief personal summary of what the person’s
involvement and contributions in the project. Before the project is submitted, the
summaries must be provided to all members for review and comment. Appendix A must
conclude with the following statement:

“All team members have read the task summaries contained in this report and have
been given an opportunity to comment. “

1.3 SUBMISSION REQUIREMENTS:

Each project submission must have a project report that contains any relevant material deemed
essential, and it must contain an Appendix A as described previously. The first page of the report
must contain the team name and the names of all members. The front page MUST contain the
following statement:

“The project was completed exclusively by the members of the team. All critical external
resources have been cited. We have given credit any pieces of information that are not
common knowledge which include another person's idea, opinion, or theory, any facts,
statistics, graphs, drawings or programming code.”

For the purposes of this project, any information provided in this problem statement or in course
notes and lectures should be consider common knowledge.

If it is discovered that you have borrowed or used material from a source that is not credited, it will
be consider plagiarism and the case will be turned over to Student Judicial Affairs.

The report must be saved a PDF document with the name of the team and report (e.g. if the team
names is Foxes, then the report name should be Foxes_Report.pdf).

Each team will submit files in one zipped folder (do not use any other type of file compression
technique or format) to SmartSite. With the exception of the project report that must be a PDF, all
other files must be compatible with your Matlab program. Be sure to include .m files, .fig.wav and
any images your program needs to run. If your program doesn't run, you won't receive credit!

All material that must be reviewed for the project must be submitted by the project deadline. No
other supplement information or submissions will be accepted after the deadline.

1.4 DEMONSTRATION FORMAT

1) Each team will interactively present their solutions to the project by demonstrating how the
code is executed.

2) Only programs submitted by the deadline must be used.

Version 1.1

3) You have the option of using a laptop provided by your team or use a workstation in the lab.
If you choose the latter option, bring your programs on a memory stick.

4) All members must participate in the presentation. How this will be done will be up to you.
5) One person must not dominate the presentation.
6) The assumption is that all members have a reasonable familiarity with the project, even if

they have not been the lead person on that specific topic. During presentation any member
of the team can be specifically asked to answer a question

2 BACKGROUND FOR PROJECT:

The first concept to clearly understand is how a point on the earth is represented by latitude and a
longitude coordinate pair.

North

South

Prime Median

FIGURE 1. THE LATITUDE IS REPRESENTED BY THE ANGLE . THE LONGITUDE IS REPRESENTED BY THE
ANGLE .

WHAT IS LATITUDE?1 Latitude, or the Y coordinate, is the distance from the equator.
Latitude lines run east and west (horizontal) along the surface of the earth. Every point above the
equator is in the "+" (positive) range and anything below the equator is in the "-" (negative) range.
Coordinate values are preceded by a + or - sign. Think of the standard X/Y chart and think of
latitude as being a point along the vertical Y axis. Every area in the United States will have a
positive (+) latitude or Y coordinate. Any point on the equator has a latitude of zero while the north

1 Adapted from www.al911.org/wireless/XYTUTORP.DOC

Version 1.1

pole is +90 and the south pole is -90. Each degree of latitude is divided into 60 equal parts called
minutes and each minute can be further divided into 60 seconds. On the surface of the earth, one
degree of latitude is about 69 miles (110 kilometers). Because the earth is not quite a perfect
sphere, the distances get slightly greater toward the poles where there is a slight flattening of the
earth.

 Y-axis

 +90

 -90

 Points above and below equator on Y-axis

WHAT IS LONGITUDE? Longitude, or the X coordinate, is the distance from the Prime
Meridian which is in Greenwich, England a borough of London. The earth is divided into two parts,
or hemispheres, of east and west longitude. Think of the earth as a globe that is divided into 360
equal slices (180 west and 180 east of Greenwich). The lines between the slices on the globe are
called meridians, thus the term "prime meridian" for the meridian that is the starting point,
represented by +000.000000 longitude. All points along the prime meridian have a longitude of
+000.000000. Longitude lines run north and south along the surface of the earth. Anything east of
the Prime Meridian is in the "+" (positive) range and anything west of the Prime Meridian is in the
"-" (negative) range. Think of the standard X/Y chart and the longitude being a point on the
horizontal X axis. All areas within the United States will have a negative (-) longitude or X
coordinate. The space between two meridans is greatest at the equator, about 69 miles (111
kilometers). This space narrows as the meridians approach the north and south poles, so the
distance between meridians is not constant. For example, a degree of longitude at New Orleans, LA
is about 60 miles (97 kilometers) while at Winnipeg, Canada, a degree of longitude is less than 45
miles (72 kilometers).

North Pole +90.000000 latitude

Equator is +00.000000
latitude

South Pole -90.00000 latitude

0

Version 1.1

 X-axis

 -180 0 +180
 Points east and west of Prime Meridian on X-axis

2.1.1 MAP PROJECTIONS:

Mapping longitudinal and latitude coordinates onto a plane causes a distortion. This occurs for the
same underlying reason that the time it takes to walk “around the world” near a pole is significantly
shorter that if the person decides to walk at the equator. For example, a Cartesian plot of a
landmass based on longitudinal and latitude distorts the area. If an area is plotted close to a pole,
the area will look significantly larger than if the area was plotted at the equator (for the same
reason,). For this reason, map projections are used to display longitudinal and latitude
information (read the Wikipedia article on map projections). There are a large variety of
projections, because it depends on what information the user wants to display. In this project you
will use the equirectangular and the Mercator projections.

Prime Meridian has a longitude of +000.000000

Points east of the Prime
Meridian have a POSITIVE
longitude

Points west of the Prime
Meridian have a
NEGATIVE longitude

http://en.wikipedia.org/wiki/Map_projection
http://en.wikipedia.org/wiki/Equirectangular_projection
http://en.wikipedia.org/wiki/Mercator_projection

Version 1.1

FIGURE 2. EQUIRECTANGULAR PROJECTION OF THE WORLD. SOURCE.

FIGURE 3. MERCATOR PROJECTION OF THE WORLD BETWEEN 82°S AND 82°N. SOURCE .

http://en.wikipedia.org/wiki/Equirectangular_projection
http://en.wikipedia.org/wiki/Mercator_projection

Version 1.1

2.1.2 MAP INFORMATION AS AN ARRAY OF STRUCTURES:

The information of the states will be provided in an array of structures. Load this structure in with

>> load states

The format of the array of structures is the following:

Field Name Data Type Description Comments
Geometry String One of the following

shape types: 'Point',
'MultiPoint', 'Line', or
'Polygon'.For a 'PolyLine',
the value of the Geometry
field is simply 'Line'.

For a 'PolyLine', the
value of the Geometry
field is simply 'Line'.

BoundingBox

2-by-2 numerical
array

Specifies the minimum
and maximum feature
coordinate values in each
dimension in the
following form:

(

)

Omitted for shape
type 'Point'.

X, Y, Lon, or Lat 1-by-N array of class
double

Coordinate vector.

Attr

String or scalar
number

Attribute name, type, and
value.

Optional. There are
usually multiple
attributes.

The fields of the structure can be seen by typing:

>> states

states =

51x1 struct array with fields:

 Geometry

 BoundingBox

 Lon

 Lat

 Name

 LabelLat

 LabelLon

 PopDens2000

Version 1.1

Typing

>> AllGeometry={states(:).Geometry}'

will indicate that the first position of the structure always contains 'Polygon'. If one only need to
inspect the entries, the easiest is to use the Variable Editor. More often, one want to use the
variables in a program. Let us review how to extract entries from the array of structures . For
example, focusing on the BoundingBox of the second:

>> entry=2; BoundingBoxExtract={states(entry).BoundingBox};

BoundingBoxExtract

BoundingBoxExtract =

 [2x2 double]

This shows that Bounding Box is a cell array, so the elements are extracted using:

>> minLong= BoundingBoxExtract{1}(1,1)

maxLong= BoundingBoxExtract{1}(2,1)

minLat= BoundingBoxExtract{1}(1,2)

maxLat= BoundingBoxExtract{1}(2,2)

minLong =

 -171.8500

maxLong =

 -129.9800

minLat =

 52.8200

maxLat =

 71.4000

And this indicates that the limits of the longitude and the latitude of the state described in the
second record. The next two entries contain the Longitude and Latitude coordinates of a polygon
describing the outline of the state. Plot the boundary associated with the second entry:

plot(states(2).Lon, states(2).Lat)

Version 1.1

Inspect the values in states(2).Lon, states(2).Lat and you will note that they contain embedded
NaNs to delimiting polygon parts. Which state is this? The Name entry contains the name of the
state

>> states(2).Name

ans =

Alaska

It is useful to extract the indices programmatically:

 names = {states.Name};

 indexHawaii = strmatch('Hawaii',names);

 indexAlaska = strmatch('Alaska',names);

-175 -170 -165 -160 -155 -150 -145 -140 -135 -130 -125
52

54

56

58

60

62

64

66

68

70

72

Version 1.1

2.1.3 CALCULATION OF AREA OF A POLYGON ON A SPHERE:

You will need to calculate the area of a polygon on a sphere that is described by a polygon described

by a set points of latitude φ and longitude λ. For the purpose of this project, we will assume that

earth is a perfect sphere that has a radius of 6367.5 km.2 Given an arbitrary set of latitude and

longitude pairs representing points on a closed polygon, how is the surface area on the sphere

enclosed by the polygon calculated? First you need to understand fully how spherical coordinates

are used to calculate surface area (take the time to become fully versed in the topic by watching this

video - if you do not “get” the underlying concepts, you will become lost in the rest of the project.)

R df
R cosf dl

FIGURE 4. SURFACE AREA INTEGRATION BY LATIDUNAL STRIPS.

EQUAL LATITUDINAL APPROACH: This can be done by integrating the contributions from equal

latitudinal strips. From this knowledge, it follows that the area of each latitudinal strip will be

(Rcos()(-))(Rd), where is the latitude, and are the starting and ending longitudes,

and all angles are in radians. To obtain the total surface area, all the areas of latitudinal strips are

summed.

To see how this works, let us use this approach to calculate the surface area described by one

eighth of a sphere, or in terms of latitude and longitude, the polygon described by the vertices

 , (

) ,

 , and . One eighth of a

sphere,has a surface area of so the answer should be . Let us first calculate the

area by performing the surface area calculation in close form:

 ∫ ∫

 (

) (

) .

2 Wolfram Alpha

http://www.mathvids.com/lesson/mathhelp/596-lecture-26-spherical-coordinates-and-surface-area
http://www.wolframalpha.com/

Version 1.1

The earth radius is R= 6367.5 km, and so the surface area is:

>> pi*R^2/2

ans = 6.3688e+007

Now, let us do the integration numerically for d , then:

>> R=6367.5 ; lambda0=0; lambda1=pi/2; phi0=0; phi1=pi/2;

>> inc=0.00001; del=[phi0:inc: phi1];

>> cosdel=cos(del)*inc; sum((R^2*(lambda1- lambda0))* cosdel)

ans = 6.3688e+007

The answer is correct. Let us extend the latitude-strip approach to a general polygonal region. Let

us focus on a 4 sided polygon. If two sides of the four sided polygon are described by two latitudes

and two longitudes, then using the latitude-strip approach, the area calculation is straightforward

extension of the previous idea. If the polygon is more complicated, as the example shown below,

then before you can apply the latitude-strip approach, the constant latitude strips need to be

generated. From the given four points (the blue dots), a more finely polygon is created3 described

by constant latitude coordinates (represented by the red dots), and then surface area can be

calculated.

f0

f1

f2

fN

fN-1

fk

f1

f2

Let us look at possible complications in calculating of the area of a state. Run the code:

3 Piecewise linear interpolation could play a role here.

Version 1.1

>> load states; subplot(1,2,2);

>> num=11; plot(states(num).Lon, states(num).Lat);title('Hawaii');

>> subplot(1,2,1);

>> num=41; plot(states(num).Lon, states(num).Lat);title('South Dakota');

If the state has a simple outline, such as South Dakota, calculating the area will be accurate even if

the finer detail in the south west corner is not accurately captured. South Dakota is also is a

continuous region. In contrast, Hawaii, is more challenging. Hawaii consists of separate regions, so

this needs to be handled. The small details of each of island will need to be captured. If the

latitude-strip approach is used, one will need to handle an additional complication seen in the

island of Oahu. At the south side, the outline folds back onto itself. Handling such complications,

using the latitude-strip, becomes non trivial.

-105 -100 -95
42.5

43

43.5

44

44.5

45

45.5

46
South Dakota

-160 -158 -156 -154
18.5

19

19.5

20

20.5

21

21.5

22

22.5
Hawaii

-158.3 -158.2 -158.1 -158 -157.9 -157.8 -157.7 -157.6

21.25

21.3

21.35

21.4

21.45

21.5

21.55

21.6

21.65

21.7

Oahu

Version 1.1

MONTE CARLO APPROACH: An alternate approach to calculate the surface area is to use the

Monte Carlo surface integration approach that was discussed in class. In this approach the polygon

is placed within a reference region that has a known surface area. Within this reference region, a

large number of points are randomly placed, and from the number of points that fall within the

polygon the area can be calculated. Matlab has built-in routine inpolygon to determine if a point

falls with a polygonal region. For a polygonal region described by latitude and longitude, a

reference region could be a bounding box polygon described by two latitudes and two longitudes

(similar to the bounding box in the mapping structure described in the previous section), for which

the surface area can be easily calculated using the latitude-strip. The general idea is shown below.

CONSTANT AREA APPROACH: In the next section you will learn how to perform a surface

integral over a two dimensional function. The ideas in that section could be applied to devise a

technique to calculate the surface area from a large number of small patches = = See the

discussion at the end of the Surface Integral section for more details.

2.1.4 SURFACE INTEGRALS

In this project, you will write a program to calculate the solar power incident in a specific month
onto a selected area on the earth. This requires calculating the surface integral

 ∬ ∬ ∫ ∫

where is the solar radiation in Watts/m2 onto a region. The information on is
provided in a two dimensional table

 where the points and points are in 1

degree increments. Only if the does not vary rapidly over the area of integration, then the
term is a constant and can be pulled outside the integral, and then

 ∫ ∫

 ∫ ∫

http://eosweb.larc.nasa.gov/sse/global/text/22yr_swv_dwn.

Version 1.1

Note: The approximation is only valid if is a constant with respect to Typically,
over the area of interest, will not be a constant, but if the area is divided in small enough
patches such that

 is constant, then

 ∫ ∫

 ∑ ∑

While the solar radiation is not constant over a surface area, it is expected to vary slowly over

typical areas of interest. This can be verified by plotting the solar radiation as a function of

longitude and latitude. For example, using the data in the two dimensional table
 plot the

data that fall within the bounding box and will span Texas.

Let us assume you need to calculate the total power incident onto Texas for a specific month.

Looking at the map of Texas below, and considering that the
 data is provided is on a “coarse”

1 degree grid, how do one deal with the parts of Texas that do not completely fall onto the 1 degree

grid? And, how can we get a numerical approximation of the incident power?

The approach is that we will regrid the data to a grid that is finer that the 1 degree grid. But, first

let us generate a two dimensional finely spaced grid and identify only those points in the grid that

fall within Texas. We make use of the function inpolygon to determine if a given point is inside a

given polygon:

“IN = inpolygon(X,Y,xv,yv) returns a matrix IN the same size as X and Y. Each element of IN

is assigned the value 1 or 0 depending on whether the point (X(p,q),Y(p,q)) is inside the

polygonal region whose vertices are specified by the vectors xv and yv.”4

First we calculate a spatial array [] and [] that spans the bounding box and

 with increments much smaller than 1 degree. Let say = = degrees.

Then, using the polygon that defines Texas, we ask which points in [] and [] fall inside Texas,

and we set those points to 1 to create a two dimensional array []. The next step is to make a

correction for the curvature of the earth, since a square defined by = = 0.1 in North Texas

will have a different area than a square defined by = = 0.1 in South Texas. After this

correction is figured out, we change the unity entries of [] with the appropriate scaling factor and

creating a new matrix [].

Next we turn our attention to the
 data which is on a too coarse a grid. We use two

dimensional interpolation, using for example the function interp2, to regrid the
 data to the

same grid as spatial array [] and place the result in a two dimensional array []. Now you set

all the points in [] that fall outside of Texas to zero, by using matrix manipulation and the

information in [] and create a matrix [] that contain the entries for only the points that

fall within Texas. With this result, we simply sum all the entries in [] to obtain the final result.

4 Matlab Documentation

http://eosweb.larc.nasa.gov/sse/global/text/22yr_swv_dwn.

Version 1.1

How does one use the above approach to calculate the area of a state? Let us, revisit a derivation of

the surface area of a sphere. The surface area of a sphere can be calculated by solving the integral

 ∫ ∫

 (

 (

)) .

The important observation is that it solves a surface integral like

 ∬ ∬ ∫ ∫

with .

-108 -106 -104 -102 -100 -98 -96 -94 -92
24

26

28

30

32

34

36

38
Texas

Version 1.1

3 PROBLEM STATEMENT:

3.1.1 GENERAL COMMENTS

1. While specific instructions are given about the assumptions that should be made, in the
event that additional assumptions are needed, make sure the assumptions are clearly
documented in the material that you hand in.

2. Throughout the project, all results must be displayed in metric units.

3.1.2 INPUTS

You are given four files:

1. An array of structures with the name states, which is loaded in by typing “load states”, that
has the same structure as described in the section “Map Information as an Array of
Structures”.

2. An Excel file StateInfo.xlsx, which contains the following information:

State

Land
Area
miles sq

Water
Area
miles sq

Total
miles sq Capital

Lat Cap Long Cap

Cost of
Solar
Electricity
cent/kWh

Alabama 50744 1675.01 52419.02 Montgomery 32.36154 -86.2791 9.19
Alaska 571951.3 91316 663267.3 Juneau 58.30194 -134.42 15.93
Arizona 113634.6 363.73 113998.3 Phoenix 33.44846 -112.074 10.08
Arkansas 52068.17 1110.45 53178.62 Little Rock 34.73601 -92.3311 7.25
: : : : : : : :
Wyoming 97100.4 713.16 97813.56 Cheyenne 41.14555 -104.802 6.49

3. An Excel file Cities.xlsx, which contains the following information:

State Lat Long City
Alabama 30.63 88.07 MobileAeros
Alabama 30.68 88.25 Mobile
Alabama 31.28 85.72 FortRucker
Alabama 31.32 85.45 Dothan
Alabama 31.87 86.02 Troy
Alabama 32.3 86.4 Montgomery
: : : :
Wyoming 44.55 110.42 Yellowstone
Wyoming 44.77 106.97 Sheridan

4. Insolation is a measure of solar radiation energy received on a given surface area in a given

time. Insolation is also known as total or global solar radiation. The average insolation, as a
function of latitude and longitude, calculated as the 22-year Monthly & Annual Average of
the amount of electromagnetic energy (solar radiation) incident on the surface of the earth,
in units of kWh/m2/day is found here (you are given a text file with this information). The
conversion into other units are given in the Table 1.

http://en.wikipedia.org/wiki/Insolation
http://eosweb.larc.nasa.gov/sse/global/text/22yr_swv_dwn

Version 1.1

5. TABLE 1. CONVERSION FACTOR (MULTIPLY TOP ROW BY FACTOR TO OBTAIN SIDE COLUMN).

 W/m2 kW h/(m2 day) sun hours/day kWh/(m2 y)
W/m2 1 41.66666 41.66666 0.1140796

kW h/(m2 day) 0.024 1 1 0.0027379
sun hours/day 0.024 1 1 0.0027379

kWh/(m2 y) 8.765813 365.2422 365.2422 1
For use in this project, the information in the two dimensional table has been reformatted
into a textfile SolarRadioation.txt

CAUTION: You must assume that the format of the array structure states , StateInfo.xlsx ,
Cities.xlsx and SolarRadioation.txt will stay the same, yet the content can change. The array
structure in states and StateInfo.xlsx contain information for each state in the United States and
the District of Columbia. While one reasonably could assume the number of states will not
change, your program should work even if the number of states changes. Also, the information
contained in the fields can be modified by user at any time. The number of entries in the file
Cities.xlsx can definitively change, as more cities are added. This means that the manner in how
you obtain, extract and process the information from these sources must be independent of the
number and content of the entries, but should be format specific.

3.1.3 TASK #1

From the information in the states, calculate the land area of all of the states and compare your
calculations with the information contained StateInfo.xlsx.

1. First you should develop at least two approaches to calculate the surface area from a polygon
described by longitude and latitude points on a sphere. For example, the first approach could
combine the Equal Latitudinal and the Monte Carlo approaches. The second approach could be
the Constant Area Approach. Make sure that you test your area calculations against known
results first (show these tests in the final report) – and then apply it to state geometries. In
your report describe your test examples, and then use Alaska and California as an example of
representative output.

2. Comment on the numerical area calculations for each state in the United States and the District
of Columbia. Display your result graphically in a manner that is clear. From the graphical
representation it should be clear if your area calculations, using the given boundaries correlate
to the area of the total state or just the land area. Show your results in the final report.

3. Create a simple GUI from which the user selects a state, and then the program calculates the
area using the two approaches in Task #1.1, display the results, as well as the area information
in StateInfo.xlsx. All area results should be displayed in in km2.

http://eosweb.larc.nasa.gov/sse/global/text/22yr_swv_dwn.

Version 1.1

3.1.4 TASK #2

The information in the array of structures states must be combined with the information in
StateInfo.xlsx and Cities.xlsx, to create a new array of structures call newstates. The program needs
to read in the information and process it using a constructor function to create the array of
structures newstates that must have the following cell fields:

N x1 struct array with fields:
 Geometry
 BoundingBox
 Lon
 Lat
 Name
 LandArea
 WaterArea
 Capital
 CapLat
 CapLon
 CostElec
 Cities
 CitLat
 CitLon

3.1.5 TASK #3

In this task you will display map information using the newstates structure defined in Task #2.

1. Create program that uses the information contained in newstates to
1.1. draw a equirectangular projected map of a region specified by a four sided polygon

described by { }
1.2. display the location and the names of all state capitals in the region, and
1.3. indicate the position of all the cities in the region (do not display the city names).
In your report use as a bounding box that include California as an example of representative
output.

2. Extend the program written in Task 3 Part 1 to create a GUI that will
2.1. display a map of the US using a Mercator projection, including Hawaii and Alaska (displays

as insets)
2.2. let the user interactively select a region to display. In some manner the user needs to

define a polygon. You need to decide what the most convenient manner doing this will be.
2.3. The selected region is displayed in a same manner as described in Task 3 Part 1.

3. Now, modify the program written in Task 3 Part 2 to allow the user to hover over the map using
the mouse and then the name of the city closest to the mouse position is displayed (if you
cannot get the “hovering” to work, as a backup approach, the user can click on the map).

http://en.wikipedia.org/wiki/Equirectangular_projection
http://en.wikipedia.org/wiki/Mercator_projection

Version 1.1

3.1.6 TASK #4

In this task, you will write a program to calculate the solar power incident in a specified month onto
a selected area on the earth.

 ∬

1. Create a program that uses the information contained in newstates and the insolation database
to display the solar radiation in W/m2 in a selected state for a specified month. The
information must be displayed as a color plot with a specified = = degrees spacing.
You should perform two dimensional interpolation, using for example the function interp2, to
regrid the

 data to the desired grid spacing . The plot should be generated using the

Matlab function pcolor with interpolated shading. The scale of the plot should be displayed so
that it is clear what color correlates with what numerical value. In your report use Alaska and
Texas in March as an example of representative output.

2. Based on the program developed in Task 4.1, calculate the total power in Watts incident onto a
selected state.
2.1. First write a test programs to calculate surface integrals.

2.1.1. Step 1: Calculates a surface integral defined by a polygon on a planar surface, using
similar input parameters as the surface integral that must eventually calculated on a
sphere. As a test case, you can a polygon that describes a square, and evaluate

∫ ∫

where is function that can be easily integrated in close form (Hint: you can
check your close form answers using Wolfram Alpha) . Show these tests in the final
report.

2.1.2. Extend the 2.1.1. approach to a spherical surface. Select a suitable test case and
report on the tests in the final report.

2.2. With the programs developed in 2.1 in place, you can proceed. Assuming that the whole
state was covered by solar panels, how much will the state make in a given month if it sells
the electricity, at the rates given in StateInfo.xlsx assuming that the efficiency of conversion
of the solar panels is a given percentage. In your report use Alaska and Texas in March as
an example of representative output.

3. Generalize the approach in Tasks 4.1-4.2, and write a program that accepts a four sided polygon
described by { } from a user, which could span multiple states in the
United States, and calculate the same information as in Task 4.2 is calculated. In your report
use a bounding box that includes California and some surrounding states. Use March as an
example of representative output.

3.1.7 TASK #5

This task combines the approaches used in the previous tasks to generate an interactive GUI which

1. Displays a map of the US
2. The user selects a region on the map.
3. The selected region is displayed along with the capital of the states, and the cities in the state is

identified by location and name as described previously)

http://www.wolframalpha.com/

Version 1.1

4. The user then selects a four sided polygon within the region as well as a month. The program
displays the information as described in Task 4.3.

You are in complete control in designing the GUI. The GUI could have a single or multiple pages. It
should be possible for the user to seamlessly navigate the interface to, for example, reset the
parameters and start all over without leaving the program.

