
Robust Control Design 

Model-based control designs require system models  

• System models are approximation of actual  physical plants 

• There are generally model uncertainties (mismatches) 

Question:  

• Is the designed controller robust against model uncertainties? 
– If the designed controller can tolerate the model mismatch, the controller 

is called “robust” 
• The controlled system’s performance does not degrade significantly in the presence of 

model mismatch using robust controller  

Some robust control techniques:  

• Linear quadratic Gaussian (LQG) control  

• Loop transfer recovery (LTR) 

• H2 and H control  



Linear Quadratic Gaussian (LQG) Control 

System model: 

  
𝑥 (𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐵𝜉𝜉(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝜃 𝑡                        
  

where 𝜉(𝑡) and 𝜃(𝑡) are zero-mean Gaussian random processes (noise) with symmetric 
covariance matrices 𝑄𝑓 = 𝐸 𝜉 𝑡 𝜉𝑇 𝑡 ≥ 0 and 𝑅𝑓 = 𝐸 𝜃 𝑡 𝜃𝑇 𝑡 > 0, and that 

𝜉(𝑡) and 𝜃(𝑡) are mutually independent: 𝐸 𝜉 𝑡 𝜃𝑇 𝑡 = 0  

Performance index of optimal control:  

 𝐽 = 𝐸  𝑧𝑇 𝑡 𝑄 𝑧 𝑡 + 𝑢𝑇 𝑡 𝑅 𝑢(𝑡) 𝑑𝑡
∞

0
  

where  𝑧 𝑡 = 𝑀𝑥(𝑡),   𝑄 = 𝑄𝑇 ≥ 0,  and   R = 𝑅𝑇 > 0  
 

The LQG problem is divided into:  

1. LQ optimal state feedback control 

2. State estimation with disturbance  



LQG with Kalman Filter 

Optimal state estimator (Kalman filter)  

System model: 

 
𝑥 (𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐵𝜉𝜉(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝜃 𝑡                        
  

Performance index:  
𝐽 = lim

𝑡→∞
𝐸 𝑥 𝑡 𝑇𝐶𝑇𝐶𝑥 (𝑡) ,   𝑥 = 𝑥 − 𝑥  ,   𝑥  = estimate of 𝑥  

Kalman filter:  

 
𝑥  = 𝐴𝑥 + 𝐵𝑢 + 𝐾𝑓(𝑦 − 𝑦 )

𝑦 = 𝐶𝑥                                    
   

Kalman gain:  

𝐾𝑓 = 𝑃𝑓𝐶
𝑇𝑅𝑓

−1  

where𝑃𝑓 = 𝑃𝑓
𝑇 ≥ 0 is the solution of the filter algebraic Riccati equation (FARE):  

 

𝑃𝑓𝐴
𝑇 + 𝐴𝑃𝑓 + 𝐵𝜉𝑄𝑓𝐵𝜉

𝑇 − 𝑃𝑓𝐶
𝑇𝑅𝑓

−1𝐶𝑃𝑓 = 0  

𝜉(𝑡) and 𝜃(𝑡) are zero-mean noise with covariance 

matrices 𝑄𝑓 = 𝑄𝑓
𝑇 ≥ 0 and 𝑅𝑓 = 𝑅𝑓

𝑇 > 0  

𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝐵𝜉𝜉

𝑦 = 𝐶𝑥 + 𝜃               
 

u y 

𝑥  = 𝐴 − 𝐾𝑓𝐶 𝑥 + 𝐵𝑢 + 𝐾𝑓𝑦 
𝑥   

Plant 

Kalman filter 
(observer) 

𝜉 𝜃 



Optimal state estimator (Kalman filter)  

Matlab function: kalman(),  

Syntax: [Gk,Kf,Pf]=kalman(G,Qf,Rf)  

where 𝐺 = [𝐴, 𝐵 , 𝐶, 𝐷 ] is the extended state-space model of the system with 𝐵 = [𝐵, 𝐵𝜉], 

𝐷 = [𝐷, 𝐷], 𝐺𝑘  is the state-space model of the Kalman filter, and 𝐾𝑓 and 𝑃𝑓  are the 

Kalman gain and the solution to FARE  

Example: For  
𝑥 (𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐵𝜉𝜉(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝜃 𝑡                        
, 𝐴 =

−0.02 0.005
−0.14 0.44

2.4 −32
−1.3 −30

0 0.018
0 0

−1.6 1.2
1 0

, 𝐵 =

0.14
0.36
0.35
0

, 𝐵𝜉 =

−0.12
−0.86
0.009
0

, 

𝐶 = 0 1 0 0 , 𝑄𝑓 = 10−3, and 𝑅𝑓 = 10−7 , design a Kalman filter.  

Matlab code:  
clear all, clc, 

A=[-0.02,0.005,2.4,-32;-0.14,0.44,-1.3,-30; 

0,0.018,-1.6,1.2;0,0,1,0]; B=[0.14;0.36;0.35;0];  

Bz=[-0.12;-0.86;0.009;0]; C=[0,1,0,0]; D=[0]; 

G=ss(A,[B,Bz],C,[D,D]); Qf=1e-3; Rf=1e-7; 

[Gk,Kf,Pf]=kalman(G,Qf,Rf), 

Solution:  

𝐾𝑓 =

215.33
87.371
−2.5369
−3.5741

  

𝑃𝑓 =

0.0044 2.1533 × 10−5

2.1533 × 10−5 8.7371 × 10−6
−3.6456 × 10−5 −7.7729 × 10−5

−2.5369 × 10−7 −3.5741 × 10−7

−3.6456 × 10−5 −2.5369 × 10−7

−7.7729 × 10−5 −3.5741 × 10−7
3.0037 × 10−7 6.3871 × 10−7

6.3871 × 10−7 1.3623 × 10−6

   

𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝐵𝜉𝜉

𝑦 = 𝐶𝑥 + 𝜃               
 

u y 

𝑥  = 𝐴 − 𝐾𝑓𝐶 𝑥 + 𝐵𝑢 + 𝐾𝑓𝑦 
𝑥   

Plant 

Kalman filter 
(observer) 

𝜉 𝜃 



Separation Principle for LQG Design 

LQG Control = Optimal observer + Optimal state feedback 

• The optimal state estimator and optimal control designs are solved 
separately, based on the “separation principle”  
• Design the Kalman filter first, and then viewing the estimated states as if 

they were the actual states, design the optimal state feedback control (LQR)  
– Requirements: (𝐴, 𝐵) is controllable/stabilizable and (𝐴, 𝑄) is observable/detectable  

    
𝑥   = 𝐴𝑥 + 𝐵𝑢 + 𝐾𝑓 𝑦 − 𝐶𝑥 

𝑢 = −𝐾𝑐𝑥                                 
           

𝐾𝑎𝑙𝑚𝑎𝑛 𝑓𝑖𝑙𝑡𝑒𝑟  
𝑆𝑡𝑎𝑡𝑒 𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘

  

where the controller gains (row vector 𝐾𝑐 and column vector 𝐾𝑓) are found as:  

    𝐾𝑐 = 𝑅−1𝐵𝑇𝑃𝑐  

    𝐴𝑇𝑃𝑐 + 𝑃𝑐𝐴 +𝑀𝑇𝑄𝑀 − 𝑃𝑐𝐵𝑅
−1𝐵𝑇𝑃𝑐 = 0  

and, by duality:   

    𝐾𝑓 = 𝑃𝑓𝐶
𝑇𝑅𝑓

−1  

    𝑃𝑓𝐴
𝑇 + 𝐴𝑃𝑓 + 𝐵𝜉𝑄𝑓𝐵𝜉

𝑇 − 𝑃𝑓𝐶
𝑇𝑅𝑓

−1𝐶𝑃𝑓 = 0  

𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝐵𝜉𝜉

𝑦 = 𝐶𝑥 + 𝜃                
 

u y 

𝑥  = 𝐴 − 𝐾𝑓𝐶 𝑥 + 𝐵𝑢 + 𝐾𝑓𝑦 
𝑥   

Plant 

Kalman filter 

𝐾𝑐 

- 
+ 

r=0 

𝜉 𝜃 



Observer-Based LQG Controller 

Plant model:   
𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝐵𝜉𝜉

𝑦 = 𝐶𝑥 + 𝐷𝑢 + 𝜃
   

 

Performance index:  

     𝐽 = lim
𝑡𝑓→∞

𝐸  𝑥𝑇 𝑢𝑇
𝑄 𝑁𝑐

𝑁𝑐
𝑇 𝑅

𝑥
𝑢

𝑡𝑓
0

𝑑𝑡  ,       Normally 𝑁𝑐 = 0   

 

LQG controller:  

      
𝑥  = 𝐴 − 𝐵𝐾𝑐 − 𝐾𝑓𝐶 + 𝐾𝑓𝐷𝐾𝑐

𝐴 

 𝑥 + 𝐾𝑓
 
𝐵 

 𝑦

𝑦 = 𝐾𝑐
 
𝐶 

 𝑥 + 0 
𝐷 

 𝑦                          

  

  

  or       𝐺𝑐 𝑠 =
𝐴 − 𝐾𝑓𝐶 − 𝐵𝐾𝑐 + 𝐾𝑓𝐷𝑘𝑐 𝐾𝑓

𝐾𝑐 0
  

 
Equivalent LQG transfer function:   

     𝐺𝑐(𝑠) = 𝐾𝑐 𝑠𝐼 − 𝐴 + 𝐾𝑓𝐶 + 𝐵𝐾𝑐 − 𝐾𝑓𝐷𝑘𝑐
−1

𝐾𝑓  

𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝐵𝜉𝜉

𝑦 = 𝐶𝑥 + 𝐷𝑢 + 𝜃    
 

u y 

𝑥  = 𝐴 − 𝐾𝑓𝐶 𝑥 + 𝐵𝑢 + 𝐾𝑓𝑦 
𝑥   

Plant 

Kalman filter 

𝐾𝑐 

- 
+ 

r=0 

𝜉 𝜃 
LQG Controller 

𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝐵𝜉𝜉

𝑦 = 𝐶𝑥 + 𝐷𝑢 + 𝜃    
 

u y 
𝐺𝑐(𝑠) 

Plant 

- 
+ 

r=0 

𝜉 𝜃 LQG Controller 



LQG Control Design in Matlab 

Matlab function: lqg(),  
Syntax:  Gc=-lqg(G,W,V)  

or:    [Af,Bf,Cf,Df]=lqg(A,B,C,D,W,V)  

where (𝐴𝑓 , 𝐵𝑓 , 𝐶𝑓 , 𝐷𝑓) is the state-space model of the LQG controller 𝐺𝑐(𝑠), 𝑊 =
𝑄 𝑁𝑐

𝑁𝑐
𝑇 𝑅

, and 𝑉 =
𝐵𝜉𝑄𝑓𝐵𝜉

𝑇 𝑁𝑓

𝑁𝑓
𝑇 𝑅𝑓

. 

Typically, 𝑁𝑐 and 𝑁𝑓 are assumed to be zero 

Example: For  
𝑥 (𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐵𝜉𝜉(𝑡)

𝑦 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑢 𝑡 + 𝜃 𝑡     
, 𝐴 =

0 1
−5000 −100/3

0 0
500 100/3

    0    −1
     0       100/3

   0 1   
 −4  −60    

, 𝐵 =

0
25/3
0
−1

, 𝐵𝜉 =

−1
0
0
0

, 

𝐶 = 0 0 1 0 , 𝐷 = 0 , 𝑄𝑓 = 7 × 10−4, 𝑅𝑓 = 10−8 , 0 , 𝑄 = 𝑑𝑖𝑎𝑔(5000,0,50000,1), and 𝑅 = 0.001, 

design the LQG control.  

Matlab code:  
close all, clear all, clc, 
A=[0,1,0,0;-5000,-100/3,500,100/3;0,-1,0,1;0,100/3,-4,-60]; 
B=[0;25/3;0;-1]; Bz=[-1;0;0;0]; C=[0,0,1,0]; D=[0]; 
Q=diag([5000,0,50000,1]); R=0.001; Qf=7e-4; Rf=1e-8;  
V=[Bz*Qf*Bz',zeros(4,1);zeros(1,4),Rf];  
W=[Q,zeros(4,1);zeros(1,4),R]; sys=ss(A,B,C,D); 
G_cont=-lqg(sys,W,V); Gc=zpk(G_cont), pole(Gc) 
figure(1), step(feedback(Gc*sys,1),0.5), 
figure(2), bode(sys,':',Gc*sys,'-',{0.1,10000}), 

[Gm,Pm,wgc,wpc]=margin(sys*Gc), 
 

LQG controller:  

    𝐺𝑐(𝑠) =
−1231049.0702 𝑠+40.47 𝑠2+105.5𝑠+5000

𝑠2+39.17𝑠+868.2 𝑠2+493.9𝑠+1.234×105
   

  Gm=4.3728, Pm=43.0423, wgc=323.2224, wpc=125.1672 

𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝐵𝜉𝜉

𝑦 = 𝐶𝑥 + 𝐷𝑢 + 𝜃    
 

u y 
𝐺𝑐(𝑠) 

Plant 

- 
+ 

r=0 

𝜉 𝜃 LQG Controller 

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4
From: In(1)  To: u1

Step Response

Time (sec)

A
m

p
li
tu

d
e

10
-10

10
-5

10
0

10
5

From: In(1)  To: u1

M
a

g
n

it
u

d
e

 (
a

b
s
)

10
-1

10
0

10
1

10
2

10
3

10
4

-360

-180

0

180

P
h

a
s
e

 (
d

e
g

)

Bode Diagram

Frequency  (rad/sec)



LQG Control Design in Matlab 

Example: For  
𝑥 (𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐵𝜉𝜉(𝑡)

𝑦 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑢 𝑡 + 𝜃 𝑡     
, 𝐴 =

0 1
−5000 −100/3

0 0
500 100/3

    0    −1
     0       100/3

   0 1   
 −4  −60    

, 𝐵 =

0
25/3
0
−1

, 𝐵𝜉 =

−1
0
0
0

, 

𝐶 = 0 0 1 0 , 𝐷 = 0 , 𝑄𝑓 = 7 × 10−4, 𝑅𝑓 = 10−8 , 0 , 𝑄 = 𝑑𝑖𝑎𝑔(5000,0,50000,1), and various weights 

𝑅 = 100, 10, 1, 0.1, 0.01,0.001 , design the LQG controls and compare.  

Matlab code:  
close all, clear all, clc, 

A=[0,1,0,0;-5000,-100/3,500,100/3;0,-1,0,1;0,100/3,-4,-60]; 

B=[0;25/3;0;-1]; Bz=[-1;0;0;0]; C=[0,0,1,0]; D=[0]; 

Q=diag([5000,0,50000,1]); R=0.001; Qf=7e-4; Rf=1e-8;  

V=[Bz*Qf*Bz',zeros(4,1);zeros(1,4),Rf]; sys=ss(A,B,C,D); 

for rho=[100,10,1,0.1,0.01,0.001], 

  rR=rho*R; W=[Q,zeros(4,1);zeros(1,4),rR]; Gc=-lqg(sys,W,V); 

  figure(1), step(feedback(Gc*sys,1),0.5), hold on, 

  figure(2), bode(sys,':',Gc*sys,'-',{0.1,10000}), hold on, 

end  

𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝐵𝜉𝜉

𝑦 = 𝐶𝑥 + 𝐷𝑢 + 𝜃    
 

u y 
𝐺𝑐(𝑠) 

Plant 

- 
+ 

r=0 

𝜉 𝜃 LQG Controller 
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LQG Control with Loop Transfer Recovery 

• LQG controllers, unlike LQR, may have very small stability margins 
– Small disturbances may drive the system unstable  

– Open-loop transfer function with LQR:  𝐺𝑜𝑙𝐿𝑄𝑅
𝑠 = 𝐾𝑐 𝑠𝐼 − 𝐴 −1𝐵  

– Open-loop transfer function with LQG:  𝐺𝑜𝑙𝐿𝑄𝐺
𝑠 = 𝐾𝑐 𝑠𝐼 − 𝐴 + 𝐵𝐾𝑐 + 𝐾𝑓𝐶

−1
𝐾𝑓𝐶 𝑠𝐼 − 𝐴 −1𝐵  

– Loop transfer recovery technique can be used to reduce the difference between these 
open-loop TFs  

• Basic idea:  
– Let 𝑄 𝑓 = 𝑄𝑓 + 𝑞𝐵𝐵𝑇. Then, if the plant is minimum-phase, as 𝑞 → ∞, the open-loop 

TF with LQG control approaches the open-loop TF with LQR control  

• lim
𝑞→∞

𝐾𝑐 𝑠𝐼 − 𝐴 + 𝐵𝐾𝑐 + 𝐾𝑓𝐶
−1

𝐾𝑓𝐶 𝑠𝐼 − 𝐴 −1𝐵 = 𝐾𝑐 𝑠𝐼 − 𝐴 −1𝐵  

• LQG/LTR control design procedure 
1. Design an optimal LQR control with the specified weighting matrices 𝑄 and 𝑅  

2. Set 𝑄 𝑓 = 𝑄𝑓 + 𝑞𝐵𝐵𝑇. Increase the value of 𝑞 only so much that the return difference of the 
compensated system approaches: −𝐾𝑐 𝑗𝜔𝐼 − 𝐴 −1𝐵,  (check Bode or Nyquist plots)  

• With the selected 𝑞 the FARE is changed to: 
𝑃𝑓𝐴

𝑇

𝑞
+

𝐴𝑃𝑓

𝑞
+

𝐵𝑄𝑓𝐵
𝑇

𝑞
+ 𝐵𝑅𝑓𝐵

𝑇 −
𝑃𝑓𝐶

𝑇𝑅𝑓
−1𝐶𝑃𝑓

𝑞
= 0  

• The Kalman filter gain, as 𝑞 → ∞, becomes: 𝐾𝑓 = 𝑞 𝐵𝑅𝑓
−1/2

  

• Stability margin of the closed-loop system increases, as 𝑞 → ∞  



LQG/LTR Control Design Techniques 

LTR designs at the system’s input and output   
1. The LTR design can be performed at the input of the plant model, by replacing 

𝑄𝑓 with 𝑄 𝑓 = 𝑄𝑓 + 𝑞𝐵𝐵𝑇 in the FARE and letting 𝑞 → ∞  

• The open-loop TF with LQG control approaches the open-loop TF with LQR control 

lim
𝑞→∞

𝐾𝑐 𝑠𝐼 − 𝐴 + 𝐵𝐾𝑐 + 𝐾𝑓𝐶
−1
𝐾𝑓𝐶 𝑠𝐼 − 𝐴 −1𝐵 = 𝐾𝑐 𝑠𝐼 − 𝐴 −1𝐵  

 

2. The LTR design can be performed at the output of the plant model, by replacing 
𝑄 with 𝑄 = 𝑄 + 𝑞𝐶𝑇𝐶 in the ARE and letting 𝑞 → ∞   

• The open-loop TF with LQG control approaches the open-loop TF of the Kalman filter 

lim
𝑞→∞

𝐾𝑐 𝑠𝐼 − 𝐴 + 𝐵𝐾𝑐 + 𝐾𝑓𝐶
−1
𝐾𝑓𝐶 𝑠𝐼 − 𝐴 −1𝐵 = 𝐶 𝑠𝐼 − 𝐴 −1𝐾𝑓   

 

• Good loop recovery is possible even for nonminimum-phase plants if the 
RHP zero is located sufficiently outside the loop passband  

 



LQG/LTR Control Design in Matlab 

Matlab functions: ltru(), ltry(),     (in Robust Control Toolbox) 

Syntax:  Gc=ltru(G,Kc,Qf,Rf,q,) 

or [Af, Bf, Cf, Df] = ltru(A,B,C,D,Kc,Qf,Rf,q,) 

 Gc=ltry(G,Kf,Q,R,q,) 

or [Af, Bf, Cf, Df] = ltry(A,B,C,D,Kf,Q,R,q,) 

Example: For system 𝐺 𝑠 =
− 948.12𝑠3+30235𝑠2+56482𝑠+1215.3

𝑠6+64.554𝑠5+1167𝑠4+3728.6𝑠3−4595.4𝑠2+1102𝑠+708.1
, find the 

LQG/LTR control for various values of fictitious noise 𝑞.   
 

Matlab code: 
close all, clear all, clc, 
num=-[948.12, 30325, 56482, 1215.3]; 
den=[1, 64.554, 1167, 3728.6, -5495.4, 1102, 708.1]; 
G=ss(tf(num,den)), Qf=1e-4; Rf=1e-5; 
A=G.a; B=G.b; C=G.c; D=G.d; 
Q=C'*C; R=1; Kc=lqr(A,B,Q,R) 
q=[1,1e4,1e6,1e8,1e10,1e12,1e14]; 
w=logspace(-2,2); 
Gc=ltru(G,Kc,Qf,Rf,q,w);   
Gc=zpk(Gc) 
figure, step(feedback(Gc*G,1),10) 

• q is a vector of increasingly large numbers 
•  Is the frequency range for Nyquist plot 
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NYQUIST LOCI -- LQG/LTR (recov. gain ---> 100000000000000)

REAL

IM
A

G

Q=1014   

LQG/LTR control for 𝑞 = 1014: 
𝐺𝑐 𝑠 =

−22026697072.6516(𝑠+30.22)(𝑠+29.71)(𝑠+6.673)(𝑠+1.315)(𝑠+0.01261)

(𝑠+1.4445×104)(𝑠+30)(𝑠+1.963)(𝑠+0.0218)(𝑠2+1.4444×104𝑠+2.087×108)
  


