Robust Control Design

Model-based control designs require system models
* System models are approximation of actual physical plants
* There are generally model uncertainties (mismatches)

Question:
* |s the designed controller robust against model uncertainties?

— If the designed controller can tolerate the model mismatch, the controller
is called “robust”

* The controlled system’s performance does not degrade significantly in the presence of
model mismatch using robust controller

Some robust control techniques:
 Linear quadratic Gaussian (LQG) control
* Loop transfer recovery (LTR)
* H, and H_ control



Linear Quadratic Gaussian (LQG) Control

System model:

x(t) = Ax(t) + Bu(t) + Bg&(t)
{y(t) = Cx(t) + 6(t)

where £(t) and 6(t) are zero-mean Gaussian random processes (noise) with symmetric

covariance matrices Qr = E{&(t)¢"(t)} = 0 and Ry = E{0(t)8" ()} > 0, and that

£(t) and O(t) are mutually independent: E{&(t)07(t)} = 0

Performance index of optimal control:

J =E{[,"[z"(D)Q z() + uT (DR u(t)]dt}
where z(t) = Mx(t), Q =QT >0, and R=R!T >0

The LQG problem is divided into:

1. LQ optimal state feedback control
2. State estimation with disturbance



LQG with Kalman Filter

Optimal state estimator (Kalman filter)

System model:

x(t) = Ax(t) + Bu(t) + BeS(¢) ¢(t) and 6(t) are zero-mean noise with covariance
y(t) = Cx(t) + 0(t) matrices Qr = QfT > 0and Ry = RfT >0

Performance index:

J= tlim E{(®)TCTCx(t)}, x =x—X, X=estimateof x

: 3 0
Kalman filter: 1 Plant 1
: U |x=Ax+Bu+B:| Y
X =A%+ Bu+ K¢ (y — 9) Kalman filter ly=Ccx+6
y=Cx ~ (observer)
. X [ «
Kalman gain: ——2=(A-KC)R +Bu+Kpy |

_ Tp —1
K = PsC" Ry
wherePr = PfT > 0 is the solution of the filter algebraic Riccati equation (FARE):

T -1 —
PrA" + APs + B;QfBs' — P;C"R; " CP; = 0



Optimal state estimator (Kalman filter)

Matlab function: kalman(),
Syntax: [G,,K;P;]=kalman(G,Q;R;)

l¢

Plant l 6

| x=Ax+ Bu+ B¢
Kalman filter y=Cx+6

X
—

(observer) ﬁ

x=(A—-K:C)Z+ Bu+Kpy

<

where G = [A, B,C, 5] is the extended state-space model of the system with B = [B, Bg],

~

D = [D, D], Gy is the state-space model of the Kalman filter, and K¢ and P are the

Kalman gain and the solution to FARE

x(t) = Ax(t) + Bu(t) + B£&(t)

Example: For {y(t) = Cx(t) + 6(¢)
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c=[0 1 0 0],Q =103 andR; =107, design a Kalman filter.

Matlab code:

clear all, clc,
A=[-0.02,0.005,2.4,-32;-0.14,0.44,-1.3,-30;
0,0.018,-1.6,1.2;0,0,1,0]; B=[0.14;0.36,0.35,0];
Bz=[-0.12;-0.86;0.009;0]; C=[0,1,0,0]; D=[0];
G=ss(A,[B,Bz],C,[D,D]); Qf=1e-3; Rf=1e-7;
[Gk,Kf,Pf]=kalman(G,Qf,Rf),

Solution:

Kf=

215.33

87.371
—2.5369
—3.5741

Pf=

|

0.0044

2.1533x 1075
—3.6456 x 1075
—7.7729 x 1075

0.14
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—2.5369 x 1077 3.0037 x 1077
—3.5741x 1077 6.3871 x 1077
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Separation Principle for LQG Design

LQG Control = Optimal observer + Optimal state feedback

* The optimal state estimator and optimal control designs are solved
separately, based on the “separation principle”

* Design the Kalman filter first, and then viewing the estimated states as if
they were the actual states, design the optimal state feedback control (LQR)
— Requirements: (4, B) is controllable/stabilizable and (4, Q) is observable/detectable

¥ =A% +Bu+ K¢(y — CX) Kalman filter
u=—K.x State feedback

where the controller gains (row vector K. and column vector K¢) are found as:

K. = R™1BTP. | & Plant o
B r=0 U | x=Ax+Bu+B:;f | Y
ATP. + P.A+MTQM — P.BR™'B"P. =0 —Q —Tly=cets [T
and’ by duallty . Kalman filter J
K = PfCTRf_l K. [#{x=(A—KC)% + Bu+Ksy .

T -1 —
PrA" + APf + B:QfBs' — P;C"R;™ " CPr =0



Observer-Based LQG Controller

x = Ax + Bu+ Bg¢

Plant model: { )= Cx 4 Dut 0

Performance index:

N
J = lim E{fotf[xT u’l QT RC] lz] dt}, Normally N, = 0
Cc

tf—)OO

LQG Controller

1 & Plant 1 0

i | y=Cx+Du+6

X = Ax + Bu + B¢&

_______________

«—x=(A—-K;C)R + Bu+ Ky

LQG controller: -G Contreller____,
( A B :
<xA=(A—B]_(C_Kfc+KfDKC) £+(Kf) y . Kalman filter
< 2 | o
L =& x+(0)y

LQG Controller

A —KfC—BKC +KkaC Kf r=0

u

l ¢ Plant l 0

| x=Ax+ Bu+ B¢§

or Gi(s) = l K, 0 -+T— Ge(s)

! y=Cx+Du+6

Equivalent LQG transfer function:
G.(s) = K,(sI — A+ K;C + BK, — K;Dk.) 'K,




LQG Control Design in Matlab

Matlab function: lqg(), »

Syntax: Gc=-lgg(G,W,\V)
or: [Afl BfICfI Df]zlqg(Ai BICI DIWIV)

. N,
where (4, By, Cr, Dy) is the state-space model of the LQG controller G.(s), W = [1\% RC], and v
Cc

Typically, N. and Ny are assumed to be zero

0

: x(t) = Ax(t) + Bu(t) + BS(t) ~5000
Example: For {y(t) = Cx(®) + Du(®) +6() 7| 0

LQG Controller

1 & Plant 1 0

Ge(s)

u

| x=Ax+ Bu+ B¢§

! y=Cx+Du+6
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LQG controller:

design the LQG control.
Matlab code:

close all, clear all, clc,

Ge(s) =

Gm=4.3728, Pm=43.0423, wgc=323.2224, wpc=125.1672

—1231049.0702(s+40.47)(s2+105.55+5000)

(52439.175+868.2)(s2+493.95+1.234x105)

A=[0,1,0,0;-5000,-100/3,500,100/3;0,-1,0,1,0,100/3,-4,-60];

B=[0;25/3,0;-1]; Bz=[-1;0;0;0]; C=[0,0,1,0]; D=[0]; S

From: In(1) To: ul

Q=diag([5000,0,50000,1]); R=0.001; Qf=7e-4; Rf=1e-8; .

V=[Bz*Qf*Bz',zeros(4,1);zeros(1,4),Rf]; 5
W=[Q,zeros(4,1);zeros(1,4),R]; sys=ss(A,B,C,D); gy
G_cont=-lgg(sys,W,V); Gc=zpk(G_cont), pole(Gc) oo

figure(1), step(feedback(Gc* sys 1),0.5),
figure(2), bode(sys,":',Gc*sys,'-',{0.1,10000}),

Phase (deg)
=

[Gm,Pm,wgc,wpc]=margin(sys*Gc),

Amplitude
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o
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o
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LQG Control Design in Matlab

' 0 1 0 0 0 _
Example' For x(t) = Ax(t) + Bu(t) + B££(t) 4 —|-5000 —100/3 500 100/3| o _|25/3| , _ 01
. y(t) = Cx(t) + Du(t) +0(t) '’ 0 —1 o 1 [ o | B ,

C=[0 0 1 0,D=1[0],Qf=7x 1074, Rf = 1078, [0], Q = diag(5000,0,50000,1), and various weights
R = {100,10,1,0.1,0.01,0.001}, design the LQG controls and compare.

v

. L I & Plant 0
Matlab code: o a5 Contraller | L
= | x=Ax+Bu+B:& | VY

close all, clear all, clc, + Ge(s) 1 y=cx+Du+6

A=[0,1,0,0;-5000,-100/3,500,100/3;0,-1,0,1;0,100/3,-4,-60];

B=[0;25/3,0;-1]; Bz=[-1,0,0;0]; C=[0,0,1,0]; D=[0];

Q=diag([5000,0,50000,1]); R=0.001; Qf=7e-4; Rf=1e-8; Step Response

V=[Bz*Qf*Bz',zeros(4,1);zeros(1,4),Rf]; sys=ss(A,B,C,D); » From: In(1) To: ul

for rho=[100,10,1,0.1,0.01,0.001],

12-

rR=rho*R; W=[Q,zeros(4,1);zeros(1,4),rR]; Gc=-lqg(sys,W,V);

figure(1), step(feedback(Gc*sys,1),0.5), hold on,

figure(2), bode(sys,":',Gc*sys,'-',{0.1,10000}), hold on, P
end Pt o 2
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LQG Control with Loop Transfer Recovery

* LQG controllers, unlike LQR, may have very small stability margins

— Small disturbances may drive the system unstable

— Open-loop transfer function with LQR: 6, ,(s) = K.(s1 = 4)7'B

— Open-loop transfer function with LQG: G,,,,,(s) = K.(sI — 4+ BK, + K;C)~ K;C(sI — A)"'B

— Loop transfer recovery technique can be used to reduce the difference between these
open-loop TFs

* Basic idea:
— Let (?f = + gBBT. Then, if the plant is minimum-phase, as ¢ — oo, the open-loop
TF with LQG control approaches the open-loop TF with LQR control

. -1 _ —
* lim k.(sI —A+BK.+K:C) KC(sI—A)"'B=K.(s]-A)""B

q—)OO

 LQG/LTR control design procedure
1. Design an optimal LQR control with the specified weighting matrices Q and R

2. Set Qf =Qr + gBBT. Increase the value of g only so much that the return difference of the
compensated system approaches: —K.(jwl — A)"1B, (check Bode or Nyquist plots)

PrAT APy BQsBT PscTRsCP
* With the selected g the FARE is changed to: fq + qf + 7 + BRfBT — % =0

. . e -1/2
* The Kalman filter gain, as ¢ — o, becomes: K = /q BRf

* Stability margin of the closed-loop system increases, as g — oo



LQG/LTR Control Design Techniques

LTR designs at the system’s input and output

1. The LTR design can be performed at the input of the plant model, by replacing
Qr with éf = Qr + gBBT” in the FARE and letting ¢ —

* The open-loop TF with LQG control approaches the open-loop TF with LQR control
lim K,(sI — A+ BK, + K:C) K:C(sI —A)™B = K.(s] — A)~'B

q—00

2. The LTR design can be performed at the output of the plant model, by replacing
Q with Q = Q + gC”C in the ARE and letting g > o
* The open-loop TF with LQG control approaches the open-loop TF of the Kalman filter
lim K.(sl — A+ BK, + KfC)_leC(SI —A)7B =C(sl — A)7K,

q—>0oo

* Good loop recovery is possible even for nonminimum-phase plants if the
RHP zero is located sufficiently outside the loop passband



LQG/LTR Control Design in Matlab

Matlab functions: ltru(), Itry(), (in Robust Control Toolbox)

Syntax: Ge=ltru(G,Kc,Qf,Rf,q,0) * qis a vector of increasingly large numbers
or [Af, Bf, Cf, Df] = Itru(A,B,C,D,Kc,Qf,Rf,q,0) * o Is the frequency range for Nyquist plot
Ge=ltry(G,Kf,Q,R,q,m)
or [Af, Bf, Cf, Df] = Itry(A,B,C,D,Kf,Q,R,q,®)

—(948.1253+3023552+564825+1215.3 )
Example: For system G(s) = ( ) , find the
s6464.55455+11675%+3728.653—4595.452+1102s+708.1

LQG/LTR control for various values of fictitious noise g.

LQG/LTR control for g = 101%:

Mat|ab Code- G.(s) = —22026697072.6516(s+30.22)(s+29.71)(s+6.673)(s+1.315)(s+0.01261)
¢ " (s+1.4445x10%)(s+30)(s+1.963)(s+0.0218) (52 +1.4444X10%5+2.087x108)

close all, clear all, clc,

num=-[948.12, 30325, 56482, 1215.3];

den=[1, 64.554, 1167, 3728.6, -5495.4, 1102, 708.1];
G=ss(tf(num,den)), Qf=1e-4; Rf=1e-5; . YUSTLO0I~LaGTR e gan—> 00mOmOBODO
A=G.a; B=G.b; C=G.c; D=G.d; Q=10 »>——"
Q=C'*C; R=1; Kc=Iqr(A,B,Q,R)
g=[1,1e4,1e6,1e8,1e10,1e12,1e14];
w=logspace(-2,2); :
Gce=ltru(G,Kc,Qf,Rf,q,w); °
Ge=zpk(Ge) ~— 1 —
figure, step(feedback(Gc*G,1),10) s 4 ! % 2 4 6 6 0

Time (sec)

Step Response

14

I
N
T

=
T

o
0o

=
o

Amplitude

—
o
i

0.2




