
PID Control

• What is a PID control

– Proportional + Integral + Derivative (PID)

– Popular in the industry
• By 1989, more than 90% PID

– Easy to implement

– It is quite robust

– Applies to mechanical systems
• Predominantly 2nd-order systems

– Tuning algorithms not dependent on exact system model

– Two popular tuning techniques
• Step reaction curve experiment

• Closed-loop “cycling” experiment under proportional control around
the nominal operating point

Plant
PID

Control +
-

r e u y

The PID action
𝑒 = 𝑟 − 𝑦

𝑢 = 𝐾𝑝𝑒 + 𝐾𝑖 𝑒
𝑡

0
+ 𝐾𝑑𝑒

𝑈 𝑠 = 𝐾𝑝𝐸 𝑠 +
𝐾𝑖

𝑠
𝐸 𝑠 + 𝐾𝑑𝑠𝐸 𝑠

𝑈 𝑠 = 𝐾𝑝 +
𝐾𝑖

𝑠
+ 𝐾𝑑s 𝐸 𝑠

𝐺𝑐 𝑠 =
𝑈(𝑠)

𝐸(𝑠)

𝐼𝐶=0

= 𝐾𝑝 + 𝐾𝑖
1

𝑠
+ 𝐾𝑑𝑠 =

𝐾𝑑𝑠2+𝐾𝑝𝑠+𝐾𝑖

𝑠

Equivalently,

Let 𝑇𝑖 =
𝐾𝑝

𝐾𝑖
 and 𝑇𝑑 =

𝐾𝑑

𝐾𝑝

 𝑢 = 𝐾𝑝 𝑒 +
1

𝑇𝑖
 𝑒

𝑡

0
+ 𝑇𝑑𝑒

𝑈 𝑠 = 𝐾𝑝 1 +
1

𝑇𝑖𝑠
+ 𝑇𝑑𝑠 𝐸 𝑠

𝐺𝑐 𝑠 =
𝑈(𝑠)

𝐸(𝑠)

𝐼𝐶=0

= 𝐾𝑝 1 +
1

𝑇𝑖𝑠
+ 𝑇𝑑𝑠 = 𝐾𝑝

𝑇𝑑𝑠2+𝑠+1 𝑇𝑖

𝑠

PID Control

𝐾𝑖 𝑠

𝐾𝑑𝑠

𝐾𝑝

+ Plant
+

-

r e u y

𝐺𝑐 𝑠

1 𝑇𝑖𝑠

𝑇𝑑𝑠

1

+ Plant
+

-

r e u y
𝐾𝑝

𝐺𝑐 𝑠

Example

Consider a third-order plant 𝐺 𝑠 =
1

𝑠+1 3 with a proportional control 𝐺𝑐 𝑠 = 𝐾𝑝.

Draw the step response of the closed-loop system for various values of 𝐾𝑝.

Matlab code:
s=tf('s'); G=1/(s+1)^3;

for Kp=[0.1:0.1:1], Gcl=feedback(Kp*G,1);

 figure(1), step(Gcl), hold on; end

figure(2), rlocus(G,[0,15]);

As 𝐾𝑝 increases:

• Response speed increases

• Overshoot increases (less stable)

• Steady-state error decreases

• System becomes unstable for

 𝐾𝑝 > 8

PID Control

1 𝑇𝑖𝑠

𝑇𝑑𝑠

+ Plant
+

-

r e u y
𝐾𝑝

𝐺𝑐 𝑠
1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Step Response

Time (sec)

A
m

p
li
tu

d
e

 Kp=0.1

 Kp=1

-4 -3 -2 -1 0 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

System: G

Gain: 7.98

Pole: -0.000683 + 1.73i

Damping: 0.000394

Overshoot (%): 99.9

Frequency (rad/sec): 1.73

Root Locus

Real Axis

Im
a

g
in

a
ry

 A
x
is

Example (continued):
Now fix 𝐾𝑝 = 1, apply a PI (proportional + integral) control, and draw the step

response of the closed-loop system for various values of 𝑇𝑖.

Matlab code:
s=tf('s'); G=1/(s+1)^3; Kp=1;

for Ti=[0.7:0.1:1.5], Gc=Kp*(1+1/Ti/s);

 Gcl=feedback(G*Gc,1); step(Gcl), hold on; end

PID Control

1 𝑇𝑖𝑠

𝑇𝑑𝑠

+ Plant
+

-

r e u y
𝐾𝑝

𝐺𝑐 𝑠
1

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Step Response

Time (sec)

A
m

p
li
tu

d
e

 Ti=0.7

 Ti=1.5

• Due to integrator action, the steady-state error to step
command will be zero for any value of 𝑇𝑖, if the closed-
loop system is stable

• If 𝑇𝑖 < 0.6 the closed-loop system will not be stable

As 𝑇𝑖 increases:
Response speed decreases
Overshoot decreases (less stable)

Example (continued):
Now fix 𝐾𝑝 = 𝑇𝑖 = 1, apply a PID (proportional + integral + Derivative) control,

and draw the step response of the closed-loop system for various values of 𝑇𝑑.

Matlab code:
s=tf('s'); G=1/(s+1)^3; Kp=1; Ti=1;

for Td=[0.1:0.2:2], Gc=Kp*(1+1/Ti/s+Td*s);

 Gcl=feedback(G*Gc,1); step(Gcl), hold on; end

PID Control

1 𝑇𝑖𝑠

𝑇𝑑𝑠

+ Plant
+

-

r e u y
𝐾𝑝

𝐺𝑐 𝑠
1

As 𝑇𝑑 increases:
Response rise-time increases slightly (slower rise)
Response settling-time does not change
Overshoot decreases (more stable)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Step Response

Time (sec)

A
m

p
li
tu

d
e

 Td=0.1

PID control with low-pass filter
In practice pure derivative is not used, due to:
– Derivative kick (a jump in the control for a step input)

– Undesirable noise amplification

Need to approximate the derivative term so that the controller’s TF is proper
(i.e., the order of its numerator is less than or equal to the order of its denominator)

– Approximate the derivative term, as: 𝑠 ≅
𝑠

𝜀𝑠+1
, 𝜀 ≪ 1

– Or equivalently, cascade the derivative term by a first-order low-pass filter: 𝑇𝑑𝑠 ≅
𝑇𝑑𝑠

1+
𝑇𝑑
𝑁

𝑠

Approximate PID control: 𝑈(𝑠) = 𝐾𝑝 1 +
1

𝑇𝑖𝑠
+

𝑇𝑑𝑠

1+
𝑇𝑑
𝑁

𝑠
𝐸(𝑠)

PID Control Implementation

1 𝑇𝑖𝑠

𝑇𝑑𝑠

1 + 𝑇𝑑𝑠 𝑁

+ Plant
+

-

r e u y
𝐾𝑝

𝐺𝑐 𝑠
1

Example (continued):
Now fix 𝐾𝑝 = 𝑇𝑖 = 𝑇𝑑 = 1, apply an approximate PID (proportional + integral +

Derivative with filter) control, and draw the step response of the closed-loop
system for various values of 𝑁.

Matlab code:
s=tf('s'); G=1/(s+1)^3; Kp=1; Ti=1; Td=1;

for N=[100,1000,10000,0.1:10,10],

 Gc=Kp*(1+1/Ti/s+Td*s/(1+Td*s/N));

 Gcl=feedback(G*Gc,1); step(Gcl), hold on; end, hold off;

figure, [y,t]=step(Gcl); err=1-y; plot(t,err);

PID Control Implementation

1 𝑇𝑖𝑠

𝑇𝑑𝑠

1 + 𝑇𝑑𝑠 𝑁

+ Plant
+

-

r e u y
𝐾𝑝

𝐺𝑐 𝑠
1

𝑁 = ∞ produces the original PID controller
𝑁 = 10 provides good PID approximation

As 𝑁 decreases:
PID approximation degrades

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Step Response

Time (sec)
A

m
p

li
tu

d
e

 N=0.1
 N=1

0 5 10 15 20 25
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 ess

 N=10

PID control with derivative in the feedback loop
In practice the derivative is preferred in the feedback loop to produce
smoother control for a step input

𝐺𝑐𝑒 𝑠 = 𝐾𝑝 1 +
1

𝑇𝑖𝑠

𝐺𝑐𝑦 𝑠 =
𝑇𝑑𝑠

1+𝑇𝑑𝑠 𝑁

Equivalently:

𝐺𝑐1 𝑠 = 𝐺𝑐𝑒 𝑠 = 𝐾𝑝 1 +
1

𝑇𝑖𝑠

𝐻 𝑠 = 1 +
𝐺𝑐𝑦 𝑠

𝐺𝑐𝑒 𝑠
=

1+𝐾𝑝 𝑁 𝑇𝑖𝑇𝑑𝑠2+𝐾𝑝 𝑇𝑖+𝑇𝑑 𝑁 𝑠+𝐾𝑝

𝐾𝑝 𝑇𝑖𝑠+1 𝑇𝑑𝑠 𝑁 +1

PID Control Implementation

𝐾𝑝 1 +
1

𝑇𝑖𝑠

𝑇𝑑𝑠

1 + 𝑇𝑑𝑠 𝑁

Plant
+

-

r e u y

𝐺𝑐𝑒 𝑠

+
-

𝐺𝑐𝑦 𝑠

Plant
+

-

r e u y
PID

𝐺𝑐1 𝑠

𝐻(𝑠)

Example (continued):
Now with 𝐾𝑝 = 𝑇𝑖 = 𝑇𝑑 = 1, 𝑁 = 10, apply an filtered PID control with derivative

in the feedback, and draw the step response of the closed-loop system.

Matlab code:
s=tf('s'); G=1/(s+1)^3; Kp=1; Ti=1; Td=1; N=10;

Gc=Kp*(1+1/Ti/s+Td*s/(1+Td*s/N));

Gcl1=feedback(G*Gc,1); Gc1=Kp*(1+1/Ti/s);

H=((1+Kp/N)*Ti*Td*s^2+Kp*(Ti+Td/N)*s+Kp)/(Kp*(Ti*s+1)*(Td/N*s+1));

Gcl2=feedback(G*Gc1,H); step(Gcl1,Gcl2);

PID Control Implementation

Plant
+

-

r e u y
PID

𝐺𝑐1 𝑠

𝐻(𝑠)

0 5 10 15 20 25 30
0

0.5

1

1.5
Step Response

Time (sec)

A
m

p
lit

u
d

e

 D in feedback

 Normal PID with filter

Ziegler-Nichols tuning formula

• For first-order plus dead-time (FOPDT) plant models: 𝐺 𝑠 =
𝐾

1+𝑠𝑇
𝑒−𝑠𝐿

– Many plants can be approximately expressed by FOPDT model

– FOPDT model of a system can be derived experimentally

– System’s step response is S-shaped, as

Tuning procedure:
1. Step reaction curve experiment:

• Measure the system’s step-response, experimentally

• Estimate the parameters 𝐾, 𝐿, and 𝑇 (or 𝑎 =
𝐾𝐿

𝑇
)

• Find the PID controller parameters from the Table:

PID Tuning

y(t)

t

T L a

K

Controller
Type

From Step Response

𝐾𝑝 𝑇𝑖 𝑇𝑑

P 1 𝑎

PI 0.9 𝑎 3𝐿

PID 1.2 𝑎 2𝐿 𝐿 2

Example:
• For the fourth-order plant 𝐺 𝑠 =

10

(𝑠+1)(𝑠+2)(𝑠+3)(𝑠+4)
, design a PID controller based on

Ziegler-Nichols tuning rule.

Matlab code:
s=tf('s');

G=10/(s+1)/(s+2)/(s+3)/(s+4);

step(G); K=dcgain(G),

From step response: 𝐾 = 0.4167, 𝐿 = 0.76, 𝑇 = 1.96, and 𝑎 = 0.1616

From Ziegler-Nichols’ Table:

P Control: 𝐾𝑝 =
1

𝑎
= 6.1895

PI Control: 𝐾𝑝 =
0.9

𝑎
= 6.1895, 𝑇𝑖 = 3𝐿 = 2.28

PID control: 𝐾𝑝 =
1.2

𝑎
= 7.4274, 𝑇𝑖 = 2𝐿 = 1.52, 𝑇𝑑 =

𝐿

2
= 0.38

L=0.76; T=1.96; a=K*L/T;

Gcp=(1/a); Gcl1=feedback(G*Gcp,1);

Gcpi=(0.9/a)*(1+1/3/L/s); Gcl2=feedback(G*Gcpi,1);

Gcpid=(1.2/a)*(1+1/2/L/s+L/2*s); Gcl3=feedback(G*Gcpid,1);

step(Gcl1,Gcl2,Gcl3);

PID Tuning

Plant PID
+

-

r e u y

0 2 4 6 8 10 12 14
-0.2

-0.1

0

0.1

0.2

0.3

0.4

Open-Loop Step Response

Time (sec)

A
m

p
li
tu

d
e

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Step Response

Time (sec)

A
m

p
li
tu

d
e

 PI Control

 P Control

Ziegler-Nichols tuning formula
• First-order plus dead-time (FOPDT) plant models: 𝐺 𝑠 =

𝐾

1+𝑠𝑇
𝑒−𝑠𝐿

• System’s Nyquist plot is as:

 Tuning procedure:
2. Closed-loop cycling experiment with proportional control:

• Draw the system’s Nyquist plot, experimentally

• Estimate the critical frequency and gain, 𝜔𝑐 and 𝐾𝑐, from the plot

PID Tuning

Controller
Type

From Step Response

𝐾𝑝 𝑇𝑖 𝑇𝑑

P 0.5𝐾𝑐

PI 0.4𝐾𝑐 0.8𝑇𝑐

PID 0.6𝐾𝑐 0.5𝑇𝑐 0.12𝑇𝑐

1
𝐾𝑐

 Im

Re
𝜔𝑐

Plant 𝐾𝑝
+

-

r e u y – Experimentally:
• Increase gain 𝐾𝑝 until system

response becomes oscillatory (this is
the critical gain 𝐾𝑐)

• Estimate the frequency of oscillation
as critical frequency 𝜔𝑐

• Find the PID controller
parameters from the Table,
where 𝑇𝑐 = 2𝜋

𝜔𝑐
:

• Typically 𝑇𝑖 > 4𝑇𝑑

Example:
• For the fourth-order plant 𝐺 𝑠 =

10

(𝑠+1)(𝑠+2)(𝑠+3)(𝑠+4)
, design a PID controller based on

Ziegler-Nichols tuning rule.

Matlab code:
s=tf('s');
G=10/(s+1)/(s+2)/(s+3)/(s+4);
nyquist(G); axis([-0.2,0.5,-0.4,0.4]);
[Gm,Pm,wcg,wcp]=margin(G)

From Nyquist plot: 𝐾𝑐 = 𝐺𝑚 = 12.6, 𝜔𝑐 = 𝜔𝑐𝑔 = 2.2361, 𝑇𝑐 =
2𝜋

𝜔𝑐
= 2.8099

From Ziegler-Nichols’ Table:
P Control: 𝐾𝑝 = 0.5𝐾𝑐 = 6.3

PI Control: 𝐾𝑝 = 0.4𝐾𝑐 = 5.04, 𝑇𝑖 = 0.8𝑇𝑐 = 2.2479

PID control: 𝐾𝑝 = 0.6𝐾𝑐 = 7.56, 𝑇𝑖 = 0.5𝑇𝑐 = 1.405, 𝑇𝑑 = 0.12𝑇𝑐 = 0.3372

Kc=Gm; wc=wcg; Tc=2*pi/wc;
Gcp=0.5*Kc; Gcl1=feedback(G*Gcp,1);
Gcpi=0.4*Kc*(1+1/0.8/Tc/s); Gcl2=feedback(G*Gcpi,1);
Gcpid=0.6*Kc*(1+1/0.5/Tc/s+0.12*Tc*s);
Gcl3=feedback(G*Gcpid,1);
step(Gcl1,Gcl2,Gcl3);

PID Tuning

Plant PID
+

-

r e u y

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Step Response

Time (sec)

A
m

p
li
tu

d
e

 PI Control

 P Control

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-20 dB

-10 dB

Nyquist Diagram

Real Axis

Im
a

g
in

a
ry

 A
x
is

Example:

• For the fourth-order plant 𝐺 𝑠 =
10

(𝑠+1)(𝑠+2)(𝑠+3)(𝑠+4)
, design a PID controller

based on Ziegler-Nichols tuning rule.

Automatic Tuning of PID Controller

Plant PID
+

-

r e u y

Automatic PID Tuning with SISOTool

1. Import system model into SISOTool

Matlab code:
s=tf('s'); G=10/(s+1)/(s+2)/(s+3)/(s+4);
sisotool(G)

2. In CETM, from “Analysis Plot” tab, launch
closed-loop step response

Automatic PID Tuning with SISOTool …

Automatic Tuning of PID Controller
Plant PID

+
-

r e u y

3. In CETM, from “Automated Tuning”tab, under
“Optimization Based Tuning”, select “PID Tuning”

4. Choose the controller type:
• P, PI, PID, PID with derivative filter

• Here, choose “PID with derivative filter”

5. Select “Tuning algorithm”
• Robust response time
• Parameter search
• Ziegler-Nichols open-loop
• Ziegler-Nichols closed-loop
• Internal Model Control (IMC)

• Here, choose “Robust response time”

Automatic PID Tuning with SISOTool …

Automatic Tuning of PID Controller
Plant PID

+
-

r e u y

6. Click on “Update Compensator” button

Tuned PID controller:

𝐺𝑐𝑝𝑖𝑑 𝑠 = 2.9402
(1+

𝑠

1.2
)(1+

𝑠

1.2
)

𝑠(1+
𝑠

1.4𝑒0.002)

Closed-loop step response:

Automatic PID Tuning with Simulink

Automatic Tuning of PID Controller

Plant PID
+

-

r e u y

Example:
• For the fourth-order plant 𝐺 𝑠 =

10

(𝑠+1)(𝑠+2)(𝑠+3)(𝑠+4)
,

design a PID controller using automated tuning in
Simulink Control Design tool.

1. Build the system model in Simulink with a PID
control block in a negative unity feedback
structure
• Add a “Step” input block and set its step-time = 0
• Add a “Scope” and a “Mux” to view system response

2. Double click on the PID block and choose:
• Continuous-time or Discrete-time

• Here, choose Continuous-time

• PID, PI, PD, P, I
• Here, choose “PID” (it includes derivative filter)

Automatic PID Tuning with Simulink

Automatic Tuning of PID Controller

Plant PID
+

-

r e u y

3. In the PID block’s parameter window, click on “Tune…”
button
• The “Step reference tracking” plot will appear in “PID Tuner” window

4. In “PID Tuner” window, press “Show parameters”
• The window expands and shows the tuned parameter values

5. In “PID Tuner” window, you may
• Adjust the response time with the slider
• Select a different plot type

• Step reference tracking
• Step disturbance rejection
• Open-loop Bode plot
• Open-loop Nichols chart

• Automatically update block parameters

Tuned PID controller:
𝐺𝑐𝑝𝑖𝑑 𝑠 = 3.1456 +

2.0524

𝑠
+ 0.7867

8.9601

1+
8.9601

𝑠

