

User Guide

Prepared by: Arjun Shekar Sadahalli

Embedded Control Systems Lab

Dept. Of Electrical & Computer Engineering

Embedded Control and Mechatronics
(ECE-456)

Farzad Pourboghrat

Arduino Platform for PMDC Motor

Modeling & Control using

MATLAB/Simulink, Arduino Target

Blockset, & Other Mathworks Tools

Contents

Agenda ... 3

Objective.. 3

Hardware and Software Requirements .. 4

 Hardware .. 4

1. Permanent Magnet DC Motor with an integrated tacho-generator........... 4

2. Arduino Duemilanove microcontroller development board 4

3. Custom Circuit Board ... 5

 Software ... 5

Things to Check / do before Start .. 6

Block Diagram .. 6

Procedure for SYSTEM IDENTIFICATION ... 7

Procedure for CONTROL DESIGN .. 17

Procedure for PARAMETER ESTIMATION ... 21

Procedure for CONTROL DESIGN .. 29

Procedure for CONTROL IMPLEMENTATION and RAPID PROTOTYPING 31

Arduino Target for Simulink Installation procedure ... 33

Agenda

 Data Acquisition:

Input and output (I/O) data of the DC Motor is captured on the host PC

using the Arduino Simulink blockset.

 System Identification / Modeling:

System Identification Toolbox (SID) used to obtain the transfer function

(Time domain) of PMDC motor platform using the captured I/O data as the

input to the SID toolbox.

 Parameter Estimation:

Simscape DC Motor parameters are tuned to match the DC motor on the

platform, using the captured I/O data.

 Controller Design:

Tune the parameters of the PID controller to control the speed of the

Simscape DC motor model in the closed-loop structure.

 Rapid Prototyping:

Build/load the tuned PID controller into the Arduino platform, capture the

I/O data, and verify the speed response of the PMDC motor.

Objective

The objective of this experiment is to use MATLAB/Simulink tools for modeling

and control design of embedded mechatronic systems. We consider a Permanent

Magnet DC Motor (PMDC) interfaced with Arduino on a custom made circuit

board. The goal is to identify the transfer function of the PMDC Motor, estimate

its parameters and design/implement control to regulate the speed of the PMDC

motor.

Hardware and Software Requirements

 Hardware

1. Permanent Magnet DC Motor with an integrated tacho-generator.

Specifications:

 Speed: +/- 4000 rpm @ 12V

 Inductance: 7mH

 Resistance: 10 Ω

 Torque: 3.45 Oz-in/amp

 Tacho: 1.9V / 1000 rpm

2. Arduino Duemilanove microcontroller development board.

3. Custom Circuit Board

Specifications:

 Arduino Duemilanove

 Super Droid H-Bridge Motor Driver (LMD 18200T)

 Op-Amp Level Shifter

 DC-DC Converter module (DCW03A-12) (+12 – 0 – -12)

 PMDC Motor

 Software

1. MATLAB (R2010a or later)

2. Simulink

3. Arduino Target Toolbox

4. System Identification Toolbox

5. Simulink design optimization Toolbox

6. Simulink Control Design Toolbox

7. Real-Time Workshop

8. Real-Time Workshop Embedded Coder

9. Instrument Control Toolbox

10. State Flow and State Flow code

Things to Check / do before Start

 Check to see if Arduino Target toolbox is installed in Simulink:

-Open Simulink, and to the left you should find ‘Arduino Target’.

 Check if you have a DC Adapter, USB Cable, Arduino work platform on the

workbench.

 Open the folder on desktop\ECE456\Arduino and find 6 Simulink ‘.mdl’ files

and a ‘.mat’ matlab file. Copy the contents.

 Create your own folder inside ‘ECE456_Students’ on the desktop and paste

the copied contents. These are the files you would be working with.

Note: If any of the above is missing, contact the T.A. or lab personnel.

 Please do not alter the files or change contents in the original directory.

Caution

 No food or drink allowed near the setup.

 Please exercise caution when working with the setup to avoid any static

discharges.

 Please read the manual carefully before proceeding with the experiment.

 If you have any questions, please do not hesitate to ask. Authorized lab

personnel would be present at all times during your experimentation.

Block Diagram

ARDUINO

DUEMILANOVE

MOTOR
DRIVER

LMD 18200T

PMDC
MOTOR

LEVEL
SHIFTER

UA - 741

DATA ACQUISITION / PC

USB–RS232 (FTDI)

Procedure for SYSTEM IDENTIFICATION

1) Connect the ‘Arduino’ board to the USB port of the PC. The FTDI drivers should

automatically configure and assign a COM port. (Admin rights required on the

computer to complete the driver installation when the board is connected the

first time).

2) Start MATLAB R2010a and make your folder the current working directory in

MATLAB.

3) Open ‘Simulink’ either by typing ‘simulink’ in the command window or by

clicking on the Simulink icon present on the toolbar.

4) Open the file ‘Mot_Ident.mdl’.

5) Check and note down the COM port number from the command window.

6) Build the ‘Mot_Ident.mdl’ file into the target. Use either ‘Ctrl + B’ or click on the

icon ‘Incremental Build’ present on the toolbar as shown below.

This successfully programs the target with the simulink file ‘Mot_Ident.mdl’. In

the process, observe the ‘Tx’ and ‘Rx’ LED’s flashing on the Arduino board and

also a ‘successful build’ message confirms the build procedure to the target. If

there is an error during the build procedure, note the error message and call the

T.A.

7) Open the file ‘Mot_Ident_host.mdl’ and check the COM port number.

8) Change the COM port number of the serial receive block if the system has

assigned a different COM port at the beginning. This can be done by double

clicking on the ‘Serial Receive’ block and changing the COM port from the drop

down as shown in the figure (next page).

9) The system then queries the user for the addition of a ‘serial configuration’

block with the current COM port number. Click ‘Yes’. Double click on the newly

added ‘Serial Configuration’ block and change the ‘Baud Rate’ from 9600 to

57600. Delete the older ‘serial configuration’ block.

Attention: If your COM port number does not show up in the drop down, then

STOP your procedure and restart MATLAB and Simulink and follow steps from

start.

Also, check the Block sample time, Data type, Header, Terminator and Data size.

They should exactly match the above parameters.

10) Power the board by connecting the DC adapter and switch ‘ON’ the DC Motor

platform. You should see the DC motor running.

11) Start the data capture by pressing the ‘Start Simulation’ in

‘Mot_Ident_host.mdl’ as shown in the figure below.

12) Run the simulation for about 10 seconds and stop. This collects input and the

output data from the DC Motor and stores them in the workspace in the

variable name ‘simout’ and ‘simout1’. Save all 5 variables present in the

workspace into a single ‘.mat’ file. (example: Original_data.mat’)

13) To extract the data, open the program ‘Extract_data.m’ and execute the

‘Without Controller’ cell by using ‘Ctrl+Enter’ and then observe the plot.

14) System Identification toolbox is used to find the time domain model of the DC

motor. This toolbox needs the knowledge of input, output, and sample time.

Toolbox is opened by typing ‘ident’ in the command window. Choose the ‘Time

domain data’ menu from the drop down as shown. Enter the input ‘ir’ and

output data ‘or’ variables in the Import data window.

0 2 4 6 8 10 12 14 16

-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

Input and Output RPM

R
P

M

15) Variables of interest ‘ir’ and ‘or’ correspond to the Input and Output RPM’s of

the DC Motor. They should be in the workspace. If not, please run the

‘Extract_Data.m’ program and then check these variables.

16) From the ‘Operations’ menu, select the range for ‘Working data’ and

‘Evaluation data’, as shown.

Once selected, Estimation data and Validation data will appear in the ‘Data

Views’ pane.

17) If your dataname is ‘MyData’ then estimation data will be ‘MyDatae’ and

validation data will be ‘MyDatav’. Drag the ‘Estimation data’ into the working

data space and ‘Validation data’ into the validation data space as shown.

‘Linear Parametric models’ is chosen to estimate the system.

18) Choose ‘Order selection’ as criteria and click ‘Estimate’.

19) Make a selection from the bars and click on ‘Insert’ to import the model into

the ‘Model views’ pane. Choose a smaller bar for a good estimate.

20) Check the ‘Model Output’ box to view the % fit of the obtained ‘ARX’ model.

The higher is the % fit, the better is the estimation of the system under test.

21) From the ‘Model Views’, drag and drop the ‘arxXXXX’ model into the ‘To

Workspace’ block to bring the model into the workspace.

22) Find the transfer function and convert the transfer function to continuous time

from discrete time.

Tf1=tf(arxXXXX,’m’);

Orig_tf=d2c(Tf1,’Ts’,0.01);

Hankel Singular Value decomposition (HSVD) is used to obtain a reduced order

model of the system. HSVD determines the significant modes of the system

and provides the state energy of all the states in the system. This information

can be used to determine the lowest possible order the system can be

reduced.

Tf1=tf(arxXXXX,’m’);

Orig_tf=d2c(Tf1,’Ts’,0.01);

hsvd(Orig_tf)

23) In the HSVD plot, the X-axis gives the ‘order’ of the system, and the Y-axis is

gives the ‘state energy’. The longer the bars, the more effect the

corresponding order will have on the system. Type the commands below to

perform these operations and also analyze the obtained figures.

From the above HSVD plot, it is clear that most of the system’s state energy is

in its first four states. Hence, a 4th or 3rd order state equation can provide an

acceptable model for the system. The balanced-order model reduction

algorithm can be used to find a system model of specified order, as

Red_tf=balred(Orig_tf,3);

Bode plots of both the transfer functions are compared.

24) With the model obtained, a PID controller is designed to control the speed of the

DC Motor. Open the Simulink file ‘DC_Motor_Model_with_Control.mdl’.

25) Double click on the ‘Transfer Fcn’ block and enter the numerator and

denominator coefficients of the reduced order transfer function.

26) The PID controller is tuned to get the desired response from the DC Motor. To

accomplish this, double click on the PID controller block in the current Simulink

model, and click on ‘Tune’. This launches the interactive PID tuning GUI to tune

the PID controller to the desired performance parameters. The parameters are

tuned by moving the slider as shown below. The tuned parameters are

updated by checking the ‘Automatically update block parameters’.

27) With the current tuned PID parameters, the response of the obtained DC

motor model is checked by simulating the model and observing the output

plot. The simulated output is shown (next page). The PID controller is tuned

again if the output of the simulation does not satisfy the desired requirements.

Repeat steps 26 and 27. On meeting the desired specification, copy the PID

controller block from ‘DC_Motor_Model_with_Control.mdl’.

28) This tuned PID controller is implemented in the target to verify the response of

the actual DC motor. Open the Simulink file ‘Mot_with_Control.mdl’. Paste the

copied PID controller in place of the existing PID controller block in the

‘Mot_with_Control.mdl’ Simulink model.

29) ‘Ctrl + B’ is used to build this model into the target and checked for the actual

DC motor response.

30) Repeat steps 7-12 for capturing the data into MATLAB workspace. Capture the

data for 4 cycles when the DC motor is running.

31) To extract the data, open the program ‘Extract_data.m’ and execute the ‘With

Controller’ cell by using ‘Ctrl+Enter’ and then observe the plot.

32) This completes the DC Motor system identification with control design using

the System Identification toolbox. The plot above successfully demonstrates

the capability to successfully implement a control of a DC Motor using the

existing MATLAB/Simulink tools on the Arduino platform.

Alternatively, the parameters of a Simulink/Simscape model of the DC

Motor can be estimated and adjusted to match the captured I/O data of the

actual DC Motor. Later, a controller can be designed to control the

Simulink/Simscape DC Motor which can be implemented to target to check the

performance of the actual DC Motor.

0 10 20 30 40 50 60

-5000

-4000

-3000

-2000

-1000

0

1000

2000

Input and Output RPM

R
P

M

Procedure for PARAMETER ESTIMATION

1) Clear the workspace and load ‘Original_data.mat’. Confirm the 5 variables

present in the workspace: Ts, comports, simout, simout1 and tout. Open

‘Extract_Data.m’ and execute the ‘Without_Controller’ cell.

2) Open the Simulink file ‘Simscape_DC_Motor_Model.mdl’. Double click on the

subsystem to see the Simscape model of the DC Motor.

3) Check the initial values of the L, R, I, K, k(1:6) parameters of the DC motor in the

workspace before you proceed further. If you don’t find these variables, please

contact the T.A.

4) From the ‘Tools’ menu, open the ‘Parameter Estimation’ dialog.

5) Click on ‘Transient Data’ and click on ‘New’ to create ‘New Data’ as shown.

6) Click on ‘New Data’ and Import the Input data ‘ir’ and Output data ‘or’ from the

workspace. ‘t1’ is the time vector.

7) Under the ‘Estimation Task’ menu, select ‘Variables’ and then click on ‘Add’ to

select all the parameters to be estimated.

8) Specify the initial guess, minimum, and maximum values for all the chosen

parameters. From the ‘Selected Parameters’ pane, choose the variable and edit

its values in the highlighted window as shown. The values are specified in the

table below:

Parameter Initial guess Minimum Value Maximum Value

I 0.0002 Kgm2 0.0001 0.001

K 12/4000 V/rpm 0.0002 0.003

L 7 mH 0 400

R 10 Ω 0 400

K2 12/4000 V/rpm 0.0002 0.003

9) Click on ‘Estimation’ to add a ‘New Estimation’ environment. Click on ‘New

Estimation’ to select the data set from the ‘Data sets’ tab as shown in the figures

(next page).

10) Using the ‘Parameters’ tab, select and check all the variables for estimated.

11) From the ‘Estimation’ tab, click on ‘Estimation Options’, and under the ‘Parallel

Options’ tab, select the ‘Use the matlabpool during optimization’ and click OK.

12) In the MATLAB command window, type ‘matlabpool’.

13) Under the ‘Estimation’ tab, select ‘Show Progress views’ and click on ‘Start’ to

start the simulation and observe the plots.

14) Check if the estimation is completed as shown below.

Procedure for CONTROL DESIGN

At this point, the parameters of the Simulink/Simscape DC motor are tuned using

the captured I/O data to match the original DC motor under test. Copy the

Simulink/Simscape model of the DC Motor subsystem

In this section, we design a PID controller to control the speed of the DC motor

with satisfactory transient and steady-state characteristics. It should be noted

that there are many control structures that could be considered for the speed

control of the motor. Here, the PID control is chosen because it has a simple

structure and it can be auto-tuned in MATLAB.

15) Open the Simulink file ‘Simscape_DC_motor_model_with_control.mdl’ and

paste the copied DC Motor subsystem.

16) Double click on the PID Controller block to tune the PID parameters. Click

‘Tune’.

17) Using the ‘Interactive Tuning’ sliding bar, you may further tune the PID

controller to meet the desired specifications. Check the ‘Automatically update

block parameters’.

18) Run the simulation with the new PID gains and observe the output of the

Simulink/Simscape model of the DC motor in the closed-loop structure.

19) We have now successfully designed a PID control for the Simulink/Simscape

model of the DC motor, which corresponds to the DC motor on the platform.

Copy the PID Controller block.

Procedure for CONTROL IMPLEMENTATION and RAPID PROTOTYPING

The tuned PID controller is implemented in the Arduino target to verify the speed

response of the DC motor in the hardware platform.

20) Open the simulink file ‘Mot_with_Control.mdl’ and paste the PID controller

block into this model. Build and load this model into ‘Arduino’ using ‘Ctrl+B’.

21) Clear the variables ‘simout’ and ‘simout1’ in the workspace.

22) Use steps 7 – 11 from the ‘System Identification procedure’ to capture the

data into workspace.

23) Run the simulation to capture at least 4 cycles of the DC Motor data. We have

‘simout’ and ‘simout1’ in the workspace containing the new data of the

controlled DC motor.

24) Open the MATLAB file ‘Extract_data.m’ and execute the ‘With Controller’ cell

by pressing the ‘Ctrl+Enter’. Plot and observe the output waveforms and verify

if the speed response of the DC Motor in the hardware is satisfactory.

25) Show the waveforms to the T.A.

This concludes the PID control design, implementation, and rapid-prototyping

part of the experiment for the DC Motor platform using ‘Arduino’.

0 10 20 30 40 50 60

-5000

-4000

-3000

-2000

-1000

0

1000

2000

Input and Output RPM

R
P

M

Arduino Target for Simulink Installation procedure

Attention: Please note that this installation ‘readme’ file is valid and applicable
only for 32-bit Operating systems running MATLAB 2010a or above with
Instrument Control Toolbox, Real-Time Workshop and Real-Time Workshop with
Embedded Coder. You need admin privileges.

1) Create a folder in C:\ called Arduino and download 3 folders from internet.
Place/Download into the folder on C:\Arduino. (Need to log-in into your
Mathworks account. If you don’t have, create one for free).

a. Arduino Target for SIMULINK from Mathworks:
http://www.mathworks.com/academia/arduino-software/arduino-simulink.html
Extract the zipped folder into a folder named ‘Arduino_Target’.

b. Arduino Interface for MATLAB:
http://www.mathworks.com/academia/arduino-software/arduino-matlab.html#
Extract the zipped folder into a folder named ‘arduino_ml’.

c. Arduino Integrated development environment: (Many versions are available.
Recommended would be the version ‘arduino-0022’. This downloaded folder
includes the USB (FTDI) virtual COM port drivers required for Windows XP).
http://arduino.cc/en/Main/Software

2) Start MATLAB and change the current working directory to C:\Arduino.

3) Connect the Arduino board. The operating system (Windows Vista and
Windows 7) automatically configures the FTDI drivers and successfully assigns a
COM port. You would be notified of the COM port number assigned. Note down
the COM port #.

4) Run the executable file ‘Arduino’ form ‘arduino-0018’ folder and under tools
select your COM port. At this juncture, your Arduino board is ready to be
programmed in command line. You can run your program and compile into the
board. For further instructions, please open the ‘Readme’ in the ‘arduino_ml’
folder.

http://arduino.cc/en/Main/Software

5) Arduino Simulink Installation:

a. Check the current directory. Change it to C:\Arduino\Arduino_Target.

b. In the Matlab command window, type:

>>addpath(fullfile(pwd,'arduino'),fullfile(pwd,'blocks'),fullfile(pwd,'demos'))
>>savepath
If you encounter an error after savepath, then your operating system is not
allowing any changes to be made to the MATLAB file ‘pathdef.m’. To overcome
this problem, right click on the MATLAB R2010a folder, click on properties, select
security, click edit and then check the box ‘Full Control’. Try ‘savepath’ again. If no
success, contact the administrator.

c. Type:
>> sl_refresh_customizations
>> arduino.Prefs.setArduinoPath('c:\Arduino\arduino-0018')
>> arduino.Prefs.setMcu('atmega328p') % or atmega168
>> comPorts=arduino.Prefs.searchForComPort
>> arduino.Prefs.setComPort(comPorts{1});

d. Select the compiler for Matlab. Type:
>> mex -setup
The compilers would be listed, choose the Matlab Lcc win32 compiler.

e. Type:
>> demo_arduino_blink
Once the file opens, build the file. Use Ctrl+B to build the file into the target.
During the build procedure, the TX and RX led’s on the Arduino board blink when
the hex file is downloading into the target.

