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Phased Array Design Toolbox V2.5

for MATLAB

Theory of Operation

 by N. Tucker

ABSTRACT

In recent years the advances in computer technology has led to increasing use of
numerical techniques in the design and development of antennas and related technology.
Of particular prevalence are full wave microwave solvers, used to obtain the current
densities on and thereby radiated fields for arbitrary structures.  However, despite the
increases in computer power, array antennas can be electrically very large and therefore
still represent a significant analysis problem. As the number of elements in the antenna
array increases, its radiated characteristics tend to be dominated by the geometric layout
and excitation of the component elements, rather than the elements themselves.

Using simple mathematical models for the element radiation patterns, combined
geometrically in the far field, the performance of large arrays can be calculated with
reasonable accuracy for significantly less computational effort. A Matlab toolbox has been
developed to enable rapid definition and analysis of  2D and 3D antenna arrays,
comprising array elements such as dipole, microstrip patch, helix or any user defined
element pattern function. This paper documents the theory used in the toolbox.
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1. INTRODUCTION

Phased array antennas can be found in a wide variety of applications including
communications, radar, remote sensing and biomedical. The term generally refers to a
collection of radiating sources with a controllable phase (and usually amplitude)
relationship with respect to each other.

From basic physics we know that 2 or more sources of sinusoidal waves, with a defined
phase relationship, will generate an interference pattern. To produce the interference
pattern you simply need to choose a line or surface at some distant location from the
sources, the summing plane. Where the waves arrive in phase there will be reinforcement
and a maxima, and where they arrive in anti-phase there will be cancellation and a minima.
This summing of sine waves according to relative distance (and therefore phase) between
the source and points on the summing plane, is really all that is required to calculate the
radiation pattern of a phased array. The difficulty tends to arise when the sources are
directional and located in 3 dimensions, the summing process is identical, it just makes the
trigonometry more challenging.

In my first job in antenna design, my mentor gave me some very sound advice “if you want
to be a good antenna engineer, get your head around 3D coordinate geometry”. Indeed,
many of the derivations we take for granted, such as the radiation pattern of a dipole, owe
as much to trigonometry as to electromagnetic theory.

To understand how this geometric approach to array design fits in with  “true”
electromagnetic modelling, a quick look at how full-wave solvers deal with the problem
may be helpful. Design packages such as HFSS, IE3D, Sonnet and NEC all use the same
basic method.

1) Divide the structure into small segments.

2) Assign a function (basis function) to each segment, representing the current density on
it.

3) Generate a matrix equation that represents the inter-action between each segment and
every other.

4) Solve the interaction-matrix equation, usually by inverting it, to get coefficient values for
the basis functions and thereby the current densities.

5) Calculate the far-field patterns and other parameters using the currents on each
segment.

Although this is a simplified description of the algorithm it illustrates that the number of
segments involved can grow very quickly. The phrase “between each segment and every
other” in step3 indicates that the computational problem is proportional to N

2
, where N is

the number of segments. For example, as a general rule segments should not have
dimensions greater than 1/10

th
 of a wavelength, so a single half-wave microstrip patch will
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require at least 5x5=25 segments.  An 8x8 array of patches results in 1600 segments and
therefore a 1600x1600 matrix to invert, not a trivial problem even with today’s hardware.
The benefit of the full wave solution is that just about all the parameters of interest can be
derived from the current densities, once calculated. These parameters include far-field
patterns, near-fields, input impedance and mutual coupling. The down side is that the bulk
of the computational effort is in solving the matrix equation and this must be done to find
one or all of the parameters listed. Although the geometrical approach yields only pattern
information, the advantage is that the computational effort is related directly to the amount
of information required, with little or no redundant calculation.

In later stages of the design process it is certainly important to be able to calculate
parameters such as input impedance, coupling and near fields, and it is worth the extra
effort. However, the usual reason for employing a phased array antenna is to produce a
specific array pattern, with beam widths, side-lobe levels, null positions and directivity
being of particular interest. These parameters are readily calculated using the geometric
method proposed here.

Also, the full-wave solver requires a complete description of the physical structure,
including feed port definitions for every active element. Despite dramatic improvements in
the front-end geometry editors, changes in element size, spacing and excitations are likely
to involve a lot of typing and mouse clicking. In the geometric approach, a tokenised
description of the array geometry (element orientation, position excitation and element
type) is used and can be edited very easily using simple command scripts.

To achieve the desired array pattern the modelling process can be used in two ways :

Pattern simulation, where an array is designed using established rules governing element
spacing and amplitude/phase distributions, modelling software is used to verify and fine
tune the design.

Pattern synthesis, where a desired array pattern is specified using a template, suitable
amplitude/phase excitations are then searched for to give the desired pattern. Depending
on the required pattern, the array excitations may not be immediately obvious, so an
optimisation loop is usually required.

In the first method it is advantageous to be able to construct the array geometry easily so
trade-offs between different configurations can be evaluated quickly. In the second method
the rapid evaluation of the array pattern is essential since the optimisation may require
many iterations to converge.

Bearing in mind these requirements and previous comments, it is felt that the geometric
approach can offer some advantages for the initial stages of phased array design. It allows
a basic analysis of structures that are too large for a complete full wave solution. Also
because of the idealised analysis (no impedance or mutual coupling is taken into account)
it can be useful in providing a benchmark for the design, allowing the designer to separate
out the performance due to the fundamental geometry and excitation from other more
subtle effects.



    www.activefrance.com Theory of Operation 5 (40)
Prepared By : No.

   Neill Tucker 08:002
Project Title : Date Rev File

   Array Design Toolbox for MATLAB 15/06/09 D C:\ My Documents \ Array Design\
ArrayCalc10d.doc

C:\DOCUME~1\IBMUSE~1\MYDOCU~1\MYDOCS~1\ARRAYC~1\ArrayCalc10d.doc

2. COORDINATE SYSTEMS AND TRANSFORMS

Before going into detail about the modelling of array elements themselves, it may be useful
to look at the coordinate systems, transforms and terminology that are used.

2.1 Global Coordinate System

First there is the global coordinate system definition, shown in figure 2.1-1 in both spherical
and cartesian forms. This is fairly standard in antenna textbooks but contrary to most
maths texts where theta and phi are the other way around. The equations inset are used to
swap between the two systems, the atan2 function is a 4-quadrant arc-tangent valid over
the range –pi to +pi.

x

z

y

r

Ø

θ

Spherical to Cartesian

Cartesian to Spherical

x =  r cos(Ø) sin(θ)
y =  r sin(Ø) sin(θ)

z =  r cos(θ)

r =  sqrt( x2 + y2 + z2 )

θ =  acos( z/r )
Ø = atan2( y/x )

Basic cartesian/spherical coordinate transforms

Fig 2.1-1  Global Coordinate System and Transforms

When this coordinate system is used in the context of antenna modelling or measurement
there are few terms and definitions that are helpful :

Mechanical bore-sight The intended direction of maximum radiation referenced to the
antenna’s mechanical structure.

Electrical bore-sight The actual direction of maximum radiation.

Main beam Refers to the lobe of the antenna pattern containing the most
radiated energy, usually centred on the electrical bore-sight.

Beam squint The difference between mechanical and electrical bore-sight
directions, normally regarded as an error in non-array type
antennas.

Beam scanning Progressive squinting of the electrical bore-sight.
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For planar array antennas the mechanical bore-sight is usually the direction normal to the
physical plane of the antenna. The electrical bore-sight is the direction of maximum
radiation when the relative phase and amplitude of all elements is equal. The antenna can
be squinted off the bore-sight by appropriate choice of phase and amplitude distribution
across the array.

For modelling purposes it is convenient to align the antenna’s mechanical bore-sight with
the Z-axis. A full sphere of pattern data can then be obtained by sweeping theta from -pi to
pi for selected values of phi from 0 to pi. This is referred to as taking “theta cuts”, sweeping
phi for selected theta values is unsurprisingly termed “phi cuts”. This arrangement means
the when the array is squinted off bore-sight, the squint by definition will be in the plane of
a theta-cut, making it is easy to plot. Plotting patterns in the plane in which squint has been
applied is important for reasons that will be clear when you see what happens to the side
lobe levels.

Note that for practical measurement purposes the antenna’s mechanical bore-sight is
usually aligned with the X-axis. This is so the Azimuth and Elevation of an AZ over EL
positioner correspond directly to phi and theta respectively. Care should therefore be taken
when using measured data in the ‘interp’ element model (ref section 5.6).

2.2 Local Coordinate System

The global coordinate system has been established as a reference for the antenna array
as a whole, the array however, is made up from individual “elements”.  Each of these
elements can be considered as an antenna in its own right and for modelling purposes it is
useful to assign each element its own local coordinate system. As far as the element is
concerned the local system is identical to the global system.

To create an array, elements (represented by their local coordinate systems) can be
placed in specific locations and orientations in the global system. This is accomplished by
using a 3D rotation matrix and offset vector. The rotation matrices in figure2.2-1 define
rotations about each of the orthogonal X,Y and Z axes.
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1           0            0

0       cos(α)      sin(α)
0      -sin(α)      cos(α)

cos(β)    0    -sin(β)

    0         1        0
sin(β)     0     cos(β)

cos(γ)    sin(γ)       0
-sin(γ)   cos(γ)       0

    0           0           1
x

z

y

 α +ve

 γ +ve

 β +ve

Rotation matrices for successive rotations around an orthogonal axis set

Rotation α
about x-axis

Rotation β
about y-axis

Rotation γ
about z-axis

Rotation                 Matrix                  Denoted by

[XR]

[YR]

[ZR]

Zr

yr

xr

Figure 2.2-1   3D Roatation Matrix Definitions

These matrices can be used in isolation or combined to form a transform matrix linking
points in the fixed axis set (X,Y,Z), to the rotated axis set (Xr, Yr, Zr). The 3x3 transform
matrix is denoted by [T], the offset matrix by [Toff] and point coordinates in (X Y Z) and (Xr
Yr Zr) are denoted by [A] and [Ar] respectively.

[T] [A] [Toff] [Ar] Eq 2.2-1
                 L M N  X Xoff Xr
                O P Q        *  Y         + Yoff   = Yr
                 R S T  Z Zoff  Zr

Coordinates can be transformed in the reverse direction using the relation :

[A] = [T]
-1
 * ([Ar] – [Toff])  Eq 2.2-2

To construct the transform matrix, three successive rotations can be combined in the
following manner:

            [T] = [ZR] * [YR] *[XR]

Note that the rotations are successive. Having rotated the axes about the Z-axis using
[ZR], the Y-rotation will be around the new Y-axis. Similarly the X-rotation [XR] will be
around the already twice rotated new X-axis. This of course means that the order of
rotation is important :

[ZR]*[YR]*[XR] ≠≠≠≠ [XR]*[YR]*[ZR]
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X1

Z1

Y1

r1

Ø1

θ1

Xg

Zg

Yg

Element 1

Element 2

Point P
(R, θ, Ø)

R

Theta Cut Through

Summing Surface

(Sphere Radius R)

X2

Z2

Y2

r2

Ø2

θ2

θ

Ø

Vectors r1 and r2 point

towards and arrive at P.

For large R, r1 and r2 are

approximately parallel.

Array Pattern Calculation Geometry

   
Figure 2.2-2    Array Geometry

To see how all this coordinate juggling might be helpful in analysing an array antenna, an
example 2 element array is illustrated in figure2.2-2. The 2 elements are located in the
global coordinate system together with a point P located on a sphere radius R.  If element
1 has the transform and offset matrix  [T1] & [Toff1] then point Ps location in local
coordinates is given by using [T1] & [Toff1] in equation 2.2-2. Local cartesian coordinates
can then be converted to spherical form to give Ps location in local (r1,theta1,phi1). The
same procedure can of course be applied to element 2 using its transform and offset
matrices.

Since the radiation patterns for many small antennas such as patches, dipole and helix can
be readily characterised over (r,theta,phi) using simple formula, we now have means to
calculate the contribution of each element at the point P. By summing the contributions for
all array elements and moving P to describe theta or phi cuts, antenna patterns can be
produced. The calculations can be summarised by equation 2.2-3.
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0

2

λ

π
=ko

Phase of element (n) in radians

Amplitude of element (n) in linear volts

Propagation constant in radians/meter

Total E-field at point P in linear volts for N elements

Element pattern function for (n)th element in

linear form, un-normalised and unitless

nr Distance from element (n) to point P in meters

Array Pattern Summation Equation

Eq 2.2-3

Equation 2.2-3  The Summation Equation

As you can see, the summation equation itself is fairly straightforward, the more difficult
part is generating the appropriate values of θn and Φn  to use in the element pattern
function. However, careful use of the 3D rotation matrix and its inverse can make the
necessary operations reasonably painless.

The next section deals with the structure of the toolbox, outlining the operation of the main
function groups.
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3. TOOLBOX OVERVIEW

As you have probably already gathered, the 3D rotation matrix plays pivotal role (ha ha) in
the array pattern calculations. It will therefore come as no surprise that the matrix forms the
backbone of the array description.

There are a number of global variables used in the toolbox but by far the most important is
“array_config” . For an N-element array this is a 3x5xN matrix describing the orientation,
position, excitation and element type. The matrix is configured as shown below.

Each of the N elements has an entry : L M N   Xoff   Amp
O P Q  Yoff    Pha
R S T    Zoff   Eltype

Where : L M N    Xoff
O P Q    Yoff    is the 3D rotation matrix and offset in (meters)
R S T     Zoff

Amp Element amplitude (linear volts)
Pha Element phase (radians)
Eltype Element type (integer) 0,1,2…representing which model to use.

As far as the toolbox operation is concerned the functions can be separated broadly into 3
categories :

Geometry Construction - These functions are used to fill and or modify the array_config
matrix, thereby defining the array to be analysed.

Plotting & Visualisation - These functions operate on the array_config matrix, calling
appropriate lower level calculation functions as required.

Element Models - These are the element pattern functions.

The following sections expand a little further on each category.

3.1 Geometry Construction

The functions provided for this are high and low level. High level functions include those to
construct rectangular, circular or cylindrical arrays directly, also rotate and move groups of
elements. Low level functions allow modification of the individual element attributes.

The user can of course fill or modify the array_config matrix in any way that is convenient.
The main restrictions are that elements are stored sequentially, with no gaps, starting with
element 1. This is because the dimension N of the array is used to determine the number
of elements in it, there is no separate variable for N.
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All elements in a given array must be of the same type due to the way the array patterns
are calculated.  I.e. the phase centre for the elements is assumed to be the origin of their
local axis set. This approximation is valid for elements of the same type in the far-field
since it is their relative position that is important.  However, the phase centre of 6-turn helix
relative to that of a patch would be rather more difficult to establish using this approach.

Finally, the rotation matrix must be a rotation matrix. It has special properties that can be
used to check for errors. If [Trot] is such a matrix then :

[Trot] is normalised - The squares of the elements in any row or column sum to 1.
[Trot] is orthogonal - The scalar product of any pair of rows or any pair of cols is 0.

Once the basic geometry has been defined the array can be “controlled” by modifying the
element amplitude and phase excitations. The element parameters can be changed
individually or by using high level functions to apply amplitude and phase tapers across the
whole array.

To verify that the correct geometry has been created there are functions to view the
geometry in 2D and 3D and to list the array elements in tabular form. The 3D option is
useful to check physical orientations, while the 2D option can be zoomed to identify the
element numbering and excitations that can be annotated to the geometry.

3.2 Plotting and Visualisation

Once the array geometry has been defined the array patterns can be calculated and
plotted in 2D and 3D. The high level commands allow multiple pattern cuts in theta or phi,
and are presented in rectangular and polar form on a dB power scale. The patterns can be
normalised with respect to the first pattern, normalised on a pattern by pattern basis or
plotted as directivity in dBi.

To plot in dBi, the peak directivity must first be calculated using numerical integration over
the complete spherical pattern. The step values for the integration can be chosen by the
user but obviously must be small enough to resolve the principal features within the
pattern.

Lower level commands enable individual pattern cuts to be specified, allowing the user to
customise the analysis or make comparisons with measured data.

3.3 Element Models

The element models are mostly taken from standard antenna texts (see references) and
represent the far-field element radiation patterns as closed form mathematical solutions
(equations).

When patterns are requested, the appropriate values of theta and phi are found in the
global coordinate system. Then using orientation and position data from the array_config
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matrix, the local theta and phi values are calculated for each element. The local values are
then used in the element model to find its contribution to the array pattern as a whole.

There are a few things that need to borne in mind when using this approach and possibly
easier to list as advantages and disadvantages:

+ Assuming the equation is not too complicated the calculation is potentially very fast.

+ Because the equations have input parameters of element width, height, length dielectric
constant etc.  Changes to element configurations are very quick and simple.

+ The “tokenised” description of the array geometry means it can be altered very easily.

+ The models take no account of input impedance or bandwidth and assume excitation in
the fundamental mode, so you don’t have to worry about tuning the element itself, just the
array parameters.

- The models take no account of input impedance or bandwidth and assume excitation in
the fundamental mode. The down side of this is of course is that ultimately the element will
require tuning to achieve a suitable impedance and bandwidth.

- Elements are limited to those with mathematical models. Arbitrary forms have to be
modelled on a full wave solver and element patterns interpolated from a fixed set of
calculated data.

- There is no account taken of mutual coupling between the elements. This can have a
significant effect on array performance when array elements themselves are large e.g.
helices, elements are closely spaced or large scan angles are used.
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4. DIRECTIVITY AND POLARISATION

Although the element models used to construct the arrays can be used analytically to find
the directivity of an element, calculating closed form solutions for arbitrary arrays of
elements is rather more difficult, and best done numerically. The same difficulties arise in
resolving polarisation components for an array, in this case a geometry based solution is
preferable.

4.1 Directivity

Directivity is defined as the ratio of an antenna’s radiation intensity in a given direction over
the radiation intensity of an isotropic source (one that radiates equally in all directions).
Directivity is often expressed in dBi and represents the dB ratio w.r.t the isotropic radiator,
much the same way as dBm is used for rf power. It can be calculated using Eq 4.1-1.

radP

U
D

π4

1
max= Eq 4.1-1

Where

=⋅= )( *

maxmaxmax EEU  Maximum radiation intensity (W / solid angle)

=radP  Total radiated power (W)

The 4π refers to the number of steradians in a sphere, there by giving the denominator
units of (W / solid angle) as well. It also means that the denominator represents the
average radiation intensity over the sphere.

For a non isotropic antenna (all practical antennas) the total power radiated Prad be found
by integrating the radiated power pattern U(θ,Φ) over a full sphere. Substituting this
integrated expression for Prad into Eq 4.1-1 gives

∫∫ ⋅⋅

=
ππ

φθθφθ
π 0

2

0
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)sin(),(
4

1
ddU

U
D Eq 4.1-2

The numerical equivalent of equation 4.1-2 can be written
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= =
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
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∆∆⋅⋅

=
M

j

N

i

ijiP

U
D

1 1
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)sin(),(
4

1
φθθφθ

π

Eq 4.1-3

In practice the theta and phi summations use values :

Theta=(start ∆θ : step ∆θ : stop(π- ∆θ))    and    Phi=(start ∆Φ : step ∆Φ : stop(2π- ∆Φ))
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4.2 Polarisation

All of the element models in this application give the total radiated E-field as a function of
their local theta, phi coordinates. In other words there is no polarisation information as such
in the element patterns.

However due to the consistent way the element model coordinate systems have been
specified, it is possible to resolve the total field patterns into vertical and horizontal
components geometrically.

Linearly Polarised Elements

All linearly polarised element models are arranged such that their E-field component is
coincident with the X-axis. By representing the X-axis as a unit vector, the vertical and
horizontal components of the vector (as viewed by a distant observer), represent directly
the vertical and horizontal components of the E-field. Figs 4.2-1a/b show a simple
example.

Xg

Zg

Yg
θ

Ø

H

V

This is the reference for the polarisation
calculation.

Observer is in direction (θ=90 , Ø=0)

relative to the antenna. He ‘sees’ no
Vertical or Horizontal components.

Za

Ya

Xa

I see

E-field

Unit Vector

Figure 4.2-1a  Polarisation Geometry 1

For example, to resolve the field components for the patch element shown in figure 4.2-1a,
in the direction (θ= - 30°,Φ= +0°).

The element is rotated in the opposite sense to point in the direction (θ= + 30°,Φ= +0°), as
shown in figure 4.2-1b.  The vertical components are given by the Z-axis components of
the E-field unit vector. The horizontal components are given by the Y-axis components of
the E-field vector.
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Xg

Zg

Yg

H

V

Taking a simple case first, to obtain the

polarisation components for a point in the
direction (θ=-30 , Ø=0)

Rotate the antenna in the opposite sense to
(θ=+30 , Ø=0) and ‘look’ at the E-field unit

vector.

Vertical component would be [-0.5]
Horizontal component would be [0]

Za

Ya

Xa

I see

30º

Figure 4.2-1b  Polarisation Geometry 1

The observer, at some distant point along the X-axis therefore ‘sees’ the following E-field
components.

Evertical = -0.5

Ehorizontal = 0

Etotal =  ( |Evertical|
2
 +  |Ehorizontal|

2 
)
1/2

  = 0.5

In this way the total, vertical and horizontal E-field components are obtained for each
element in the array. The polarisation components are summed individually using the array
summation equation 2.2-3, giving the separate polarisation components for the array as a
whole.The  thing to note here that Evertical is negative, the significance of which is illustrated
in figure 4.2-2.
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In figure 4.2-2 there is a 2-element array that has been constructed by rotate-copy
operation on the first element. Looking at the vector components for each element in the
direction (θ= +0°,Φ= +0°), so basically as drawn. We see that the E-field vectors are
pointing in opposite directions, and therefore have opposite signs for the horizontal vector
components. This means as far as the observer is concerned the elements are in anti-
phase (assuming the excitation is identical).

Clearly this geometry induced phase reversal must be taken into account, if the correct far-
field patterns are to be produced.

Xg

Zg

Ygθ

Ø

H

V

For the direction (θ= +0°,Φ= +0°), so no

rotations  required.

The observer ‘sees’ no Vertical components and

Horizontal components of +1 and -1 for

Element #1 and #2 respectively.

The angles due to offsets from origin will be

approximately zero for large distances to

observer.

Za

Ya

Xa

I see

E-field

Unit Vector

Element #1

Element #2 &

Figure 4.2-2  Polarisation Geometry 2

Fortunately, accounting the phase reversal is just a matter of looking at the sign of the E-
field vector component and adding +180° for E

+ve
 and 0° for E

–ve
. This of course applies to

both vertical and horizontal components. Using the far-field summing equation 2.2-3 and
including the phase reversal components, we can write the following

∑
=

++−=
N

n

rkoj

nnnnVertVert
VertnneFAEE

1

)||(),(),( γβφθφθ
r

Eq 4.2-1

∑
=

++−=
N

n

rkoj

nnnnHorizHoriz
HoriznneFAEE

1

)||(),(),( γβφθφθ
r

Eq 4.2-2
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2/1
22

),( 




 += HorizVertTotal EEE φθ Eq 4.2-3

Where

=VertE
r

Vertical component of E-field unit vector

=HorizE
r

Horizontal component of E-field unit vector

{ } )2/()2/()( ππγ +⋅= VertVert Esign
r

{ } )2/()2/()( ππγ +⋅= HorizHoriz Esign
r

The equations Eq 4.2-1 and Eq 4.2-2 give the vertical and horizontal components of the E-
field at the far-field point in complex form i.e. Magnitude and phase information. Equation
4.2-3 gives the magnitude of the total field.
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Circularly Polarised Elements

The treatment of inherently circularly polarised elements such as the helix is very simplistic,
the vertical and horizontal components are just set to the standard polarisation mismatch
loss factor (0.7071 or  -3.01dB) down on Etotal, for all theta and phi.

Circular polarisation analysis using the resolved vertical and horizontal components has
been included for ArrayCalcV2.0 using equations Eq 4.2-1, 4.2-2 and those in Appendix A.
Circularly polarised elements can be produced by simply overlaying two linear elements at
right angles to each other and exciting them in phase quadrature (90deg with respect to
each other). Or by placing elements at right angles to each other, exciting them in-phase,

and placing them λ/4 apart in the direction of propagation.

The diagram in figure 4.2-3 shows circular polarisation using dipoles. However, any linear
elements can be used in this way, keeping in mind of course the practicalities. For example
method 1 can be used with a patch element to represent the orthogonal modes. While
method 2, although possible in ArrayCalc, would be tricky in practice. See [1] for a
comprehensive definition of circular polarisation sense.

Zg

Yg

E-field

Vector

Xg

Dipole-2

Amp 0dB

Phase 90Deg (Lagging)

Dipole-1 

Amp 0dB 
Phase 0Deg

RHCP Propagation

Zg

Yg

Xg

Dipole-2

Amp 0dB

Phase 0Deg

Dipole-1 

Amp 0dB 
Phase 0Deg

LHCP Propagation

λ/4

Method-1  Method-2

Figure 4.2-3  Circular Polarisation using crossed dipoles

The cautionary note here is that ArrayCalc is only summing idealised E-field vectors.
Actually producing highly independent orthogonal polarisations (modes) on anything other
than a pair of crossed dipoles is quite hard in practice.

In addition, when an array comprising elements that support a cross-polar component (e.g.
patches or crossed-dipoles) is scanned, considerable amounts of cross-polar coupling can
be generated, even if only one polarisation (mode) is excited. This effect is due to mutual
coupling and will not be modelled by ArrayCalc.
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Overall

The polarisation resolving method for has been validated against NEC models and found
to be in good agreement for arrays with electrically small elements, exhibiting low mutual
coupling. For arrays with large elements and high levels of mutual coupling, as might be
found in arrays of long Yagi antennas, the method is less effective.  The reasons for this
are two-fold: First the origin of the E-field is distributed, so a single unit vector is not a very
good representation. Second the mutual coupling causes the array excitation to change, so
the contributions from individual elements may not be accurate.

The comments above should be taken special note of when using the ‘interp’ element (ref
section 5.11)  to array externally generated field patterns of electrically large elements.
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5. ELEMENT MATHEMATICAL MODELS

This section describes the mathematical models that are used for the element types
included in the toolbox. Generally the models follow those presented in standard antenna
texts [1],[2] and [3] except for some minor modifications specific to this application. The
modifications principally involve the axis system for the model, roll-off at the pattern edges
and side-lobe level adjustment.

The only other difference is that common factors in the standard equations have been
removed. These factors represented the propagation constants and excitation voltages/
currents, so actual field strengths could be calculated. In this application the propagation
factor and element excitations are part of the array summation, see Eq2.2-3

5.1 Helix

The model for the helix antenna treats the helix as an array of loops, each with identical
current distribution and phase separation with respect to each other. The diagram in figure
5.1-1 shows the principal dimensions.

Lo

S

S

Lo
C = πD

D

α

Conditions for endfire operation
with increased directivity.

N > 3      α ≅ 13º       C ≅ λ

Helix Geometry

X

Z

θ

Figure 5.1-1  Helix Geometry

There are various possible operating modes for the helix, determined by its electrical
dimensions at the frequency of operation, [2] is a good source of additional information.
For this application the helix is assumed to be operating in the end-fire, increased
directivity (or Hansen-Woodyard) condition. This is in fact the most common use of the
helix antenna.
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The Hansen-Woodyard condition refers to the phase change between loops of the helix.
For ordinary end-fire operation, the loops would be phased according to their physical
position. For example if the loop spacing in an N element array represented 90° in free
space, then each loop would be phased -90° from its neighbour, in the direction of
propagation. Hansen and Woodyard discovered that if the same array had elements
phased -(90°+180°/N) with respect to each other, the array had significantly improved
directivity. Not only this, but also certain helix geometries naturally hold this mode over a
wide bandwidth, an octave or more.

 The equation 5.1-1 below is the standard formulation the radiation pattern of an N-turn
helix, operating in the increased directivity condition, Etotal is in linear volts.

[ ]
[ ]2/sin

)2/(sin
)cos(

2
sin

ψ

ψ
θ

π N

N
Etotal 








= Eq 5.1-1
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                        Indicating no dependence on Lo

oko λπ /2=

The equation is a little misleading in that it implies that it is dependent on the turn length
Lo. With a little algebra it is possible to show that this is not the case, because Lo is fixed
by the value of the turn spacing S and pitch angle alpha (see the alternative formulation for
psi in Eq5.1-1). The values of alpha and circumference C are constrained to approximately
13deg and 1λ respectively by the need for the increased directivity condition. This is the
reason why the helix configuration parameters in the global variable helix_config are
limited to N and S. In the actual MATLAB code, values for C and Lo are calculated from S
and used in the standard form to make the equations look more familiar.

During initial validation of the equation model, patterns were compared with a NEC2 model
and found to be in good agreement for the main lobe parameters. However the side-lobe
levels given by the model were significantly lower than those from the NEC2
implementation or indeed that could be realistically expected from a practical design. This
is because the equation model assumes perfect current and phase distributions along the
helix. While the approximation is good for very long helicies, shorter helicies can deviate
significantly from the ideal.

To compensate for this shortcoming, the standard helix pattern Eq 5.1-1 is multiplied by a
pattern scaling function Eq 5.1-2 to raise the side-lobe levels in proportion to theta
squared, giving the helix far-field pattern Eq 5.1-3.
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( ) 1110 20/

2

2

+−= SSF
PatternSF

π

θ
 Eq 5.1-2

Where : SSF is the side-lobe scaling factor in dB  (SSF=15 in the model)

PatternSF is equal to the SSF (in linear form) at theta=pi  and  tends towards 1, as theta tends towards 0.

Although the use of a pattern scaling function may seem a little arbitrary, the intention is
simply to make the model slightly closer to reality. To this end, the function works well and
for very little extra complexity.

The far-field pattern for the helix is therefore given by :

PatternSFEtotalEhelix ⋅= Eq 5.1-3

5.2 Rectangular Microstrip Patch

The model used for the rectangular microstrip patch is the cavity / transmission-line model
and is referenced by most antenna texts covering microstrip antennas. The patch is
modelled as 2 radiating slots, separated by a nominally half wavelength section of low
impedance transmission line.

The geometry for the patch is shown in figure 5.2-1 and the principal thing to note is the
transposition of axes between the local element system (used in the array calculations)
and the system as defined in the model. The main patch parameters are :

• Length of the transmission line between the slots L.

• Width of the patch W.

• Patch height h.

The E-theta and E-phi components of the far-field radiation patterns are given by Eq 5.2-1
and Eq5.2-2 respectively.
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Where :

oko λπ /2=

LLLe ∆⋅+= 2              The patch looks longer electrically due to the fringing fields at each end.
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Modification of Er to account for fringing fields at the  sides of the microstrip  (Valid for W/h >1)

Rectangular Patch

Geometry

Z (x)

X (y)

Y (z)

Co-ordinate Axis Transposition

X,Y,Z is the local element coordinate system used for the array
calculation. Theta and Phi are the spherical coordinate directions.

(x),(y),(z) is the co-ordinate system as defined in the model.

Theta and Phi in the model are defined in the same sense except
w.r.t. (x),(y) and (z).

L

W

h

θ

Φ

Slot #2Slot #1

Figure 5.2-1   Rectangular Patch Geometry
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Elements using ground planes such as patches and helicies have models that assume
infinite ground planes and are therefore only valid over the hemisphere 0°<theta<90°,
0°<phi<360°.  Also, since it is possible to define conformal arrays it is highly likely that the
local (theta, phi) values will lie outside the valid range for some of the elements, for a given
far-field pattern.

For helicies it is simply a matter of defining the pattern (in linear volts) to be zero for
theta>90deg. For patches the cavity model is used and things are slightly more
complicated. The cavity model in the E-plane is fairly accurate for theta values less than
70deg. However, beyond 70deg the roll-off exhibited by more accurate models and
measured examples is not reproduced. Instead the pattern truncates at theta=90deg, at
around –8dB down on maximum, depending on the patch design. Leaving this step in the
pattern would severely limit the analysis of conformal arrays, see figures 5.2-2a/b.

To alleviate the problem a roll-off can be applied as a pattern scaling factor (PatternSF)
using a simple function of the local theta value (in degrees), and is of the form :

1
))90((

1

1

2
+

+−

=

KRollOff

PatternSF

θ

 Eq 5.2-3

RollOff is the roll-off factor between 0 and 1 (1=sharp 0=soft), typical value 0.15

K  is a small offset to avoid infinities at theta=90, typical value 0.001

The total far-field pattern for the rectangular patch is therefore given by the following
equation :

PatternSFtotalEtotalEEpatchr ⋅⋅= θφ Eq 5.2-4

The justification for this modification of the standard model is that for this application it
gives more accurate results when looking at conformal arrays or theta values approaching
90 degrees.

The geometry and patterns in Figures 5.2-2a/b illustrate the roll-off problem. The geometry
represents 2 rectangular patches 0.7 lambda apart and rotated –30deg and +30deg
respectively about the global Y-axis.
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θ1
θ2

Truncated Pattern

Pattern With Roll-off

Element-1 

E-plane Pattern

Element-2 

E-plane Pattern

Z1 Z2

X1

X2

Patch Pattern Roll-off 

Example Geometry

30º
30º

Figure 5.2-2a   2-element array geometry

Figure 5.2-2b   2-element array with/wout roll-off

The calculated patterns with and without roll-off clearly show the discontinuities in the
calculated far-field pattern if no roll-off is used. While this may seem a little obvious and
trivial for a 2 element array, for large arrays with complex patterns it is not.
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5.3 Circular Microstrip Patch

The circular microstrip patch uses the cavity model, simplified to a circular loop for large
values of a/h (see figure 5.3-1). The operation of a circular patch in the fundamental mode
TM

z
110 is pretty much the same as for the rectangular patch except the dimensions are

determined solely by the radius a.

The far-field radiation patterns are calculated using the following equations :

FJajE ))(cos( 02φθ −= Eq 5.3-1

FJbjE ))sin()(cos( 02φθφ += Eq 5.3-2

Where :
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         Effective radius due to fringing fields.

J0   denotes zero order Bessel function of the first kind.

J2   denotes second order Bessel function of the first kind.

The total far-field pattern for the circular patch is given by the following equation :

( ) PatternSFEEEpatchc ⋅+=
2/122

φθ

Etheta and Ephi are Eq 5.3-1 and  5.3-2 respectively

PatternSF is given by Eq 5.2-3 and reasons for its use are covered in section 5.2



    www.activefrance.com Theory of Operation 27 (40)
Prepared By : No.

   Neill Tucker 08:002
Project Title : Date Rev File

   Array Design Toolbox for MATLAB 15/06/09 D C:\ My Documents \ Array Design\
ArrayCalc10d.doc

C:\DOCUME~1\IBMUSE~1\MYDOCU~1\MYDOCS~1\ARRAYC~1\ArrayCalc10d.doc

Circular Patch Geometry

Z (z) 

X (x)

Y (y)

h

θ

Slot #2Slot #1

a

Co-ordinate Axis

X,Y,Z is the local element coordinate system used for the array

calculation. Theta and Phi are the spherical coordinate directions.

(x),(y),(z) is the co-ordinate system as defined in the model and
requires no modification for the array calculation.

Φ

Figure 5.3-1  Circular Patch Geometry

Generally the circular patch has slightly inferior performance to its rectangular cousin, its
efficiency and bandwidth being lower. There is however less copper area for a given
resonant frequency, this maybe beneficial in terms of mutual coupling.

5.4 Dipole

The dipole model is again standard issue in most antenna texts and is derived by
integrating the field contributions from a line of infinitesimal dipole elements.

The model used here is for an arbitrary dipole of finite length and as such need not be λ/2,
although this is by far the most common usage. The model assumes a sinusoidal current
distribution symmetrical about a central feed point. If you are tempted to experiment with
lengths other than usual λ/2, it might be wise to investigate the implications regarding input
impedance first.

The field pattern and geometry for the dipole are given be Eq 5.4-1 and figure 5.4-1
respectively.
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The equation for the dipole far-field pattern is as follows :
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Dipole Geometry

Co-ordinate Axis Rotation

X,Y,Z is the local element coordinate system used for the array

calculation. Theta and Phi are the spherical coordinate
directions. X,Y,Z are (x),(y),(z) rotated -90deg around the

common Y(y)-axis

(x),(y),(z) is the co-ordinate system as defined in the model.

Theta and Phi in the model are defined in the same sense except

w.r.t. (x),(y) and (z).
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Figure 5.4-1 Dipole coordinate geometry
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5.5 Dipole over ground

The dipole over a ground plane model is the same as for the normal dipole except that it is
used twice. For a dipole placed at height h above a plane, a second ‘image’ dipole is
placed at –h below the plane and phased at 180deg w.r.t. the first, creating a virtual ground
plane between the two. An intermediate array calculation is performed on the dipoles to
generate a far-field pattern for the pair.

The field pattern and geometry for the dipole are given be Eq 5.5-1 and figure 5.5-1
respectively.
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Dipole Over Ground

Geometry

X1

Y1

θ1

Φ1

h

h

Virtual ground plane

Dipole #1

Dipole #2

Co-ordinate Axes Definitions

Xn,Yn,Zn or  (rn,θn,Φn) are the individual dipole

coordinate systems used for the intermediate

array calculation.

X,Y,Z or (R,θ,Φ) is the axis system for the

dipole pair in the main array calculataion.

X2

Φ2

Y2

Z1

θ2

Z2
Distance to far-

field summing

point
r1

r2

R

X

Y

Z

Φ

The only additional point I would make here is that although the dipole looks very simple to
implement at the modelling stage, bear in mind that each one will ultimately require a balun
of some description, which can add considerably to the cost in a high volume application.
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5.6 Rectangular Aperture

The rectangular aperture model is for a rectangular, uniform E-field distribution within an
infinite groundplane. The orientation and dimensions of the aperture are shown in figure
5.6-1 below.

X

Z

Y

Ø

θ

b

a

Figure 5.6-1  Rectangular Aperture Configuration
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5.7 Rectangular Waveguide Aperture

The rectangular waveguide aperture model is for an open-ended rectangular waveguide
supporting the TE10 mode. The orientation and dimensions of the aperture are shown in
figure 5.7-1 below.
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Figure 5.7-1  Rectangular Waveguide Configuration
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5.8 Circular Aperture

The circular aperture model is for a circular, uniform E-field distribution within an infinite
groundplane. The orientation and dimensions of the aperture are shown in figure 5.8-1
below.

x

z

y

Ø

θ

a

Figure 5.8-1  Circular Aperture Configuration
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Where :

)sin(θ⋅= kaZ (a is the aperture radius)
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5.9 Circular Waveguide Aperture

The circular waveguide aperture model is for an open-ended circular waveguide supporting
the TE11 mode. The orientation and dimensions of the aperture are shown in figure 5.9-1
below.
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θ

a

Figure 5.9-1  Circular Waveguide Aperture Configuration
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5.10 Parabolic Dish Aperture

The circular parabolic dish aperture is represented by a linearly polarised aperture field

with an amplitude taper as a function of radial distance (ρ) to the edge of the dish (a).

x

z

y

Ø

θ

a ρ

Figure 5.10-1   Parabolic Dish Aperture Configuration

The amplitude taper is described by
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       magnitude of aperture E-field Eq 5.10-1

Where

a = Edge of aperture radius

ρ = Radial distance from aperture centre

A = Linear value of aperture field at aperture edge A(dB)=20*log10(A)

n = Amplitude taper factor, rate at which the amplitude drops to value A

An amplitude taper of 10.5dB (A=0.3) provides optimum gain. Increasing the taper will
reduce sidelobe levels further, at the expense of gain.

The factor n effectively describes how the feed illuminates the dish, higher gain feeds will
have a higher n-value, a typical value for n is around 2.5.
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The Etheta and Ephi patterns are given by

ZE ⋅= )cos(φθ Eq 5.10-2

ZE ⋅⋅= )sin()cos( φθφ Eq 5.10-3
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5.11 Interpolated

There are obviously going to be occasions when the built in models are not applicable, the
‘interp’ element provides a means of arraying elements defined by a set of pattern cuts
from an external source. These may be measured data or data calculated using a more
suitable package.

The basic operation of the routine is illustrated in the flow chart  5.11-1

Interpolated Data Element

Flow Chart

Read external data in column format. 

Theta cuts 0->180  over  phi 0->360
Theta (Deg)   Phi (Deg)  Total Power (dB)

        θ1                  Φ1                  P1

        θ2                  Φ2                  P2

         .                     .                    .

        θn                   Φn                 Pn

Theta and Phi of the far-

field point, as required by

the main array calculation.

Denoted θr , Φr

Find the theta and phi

step values in the data.

Denoted dθ , dΦ

Find the nearest data

values to θr and Φr.

Denoted θnrst1 , Φnrst1

Use nearest data values θnrst1 , Φnrst1

together with step values dθ and dΦ to find

next nearest values. Denoted θnrst2 , Φnrst2

Assemble into 4 sets of co-ordinates.

Coord1  ( θnrst1 , Φnrst1 )
Coord2  ( θnrst1 , Φnrst2 )

Coord3  ( θnrst2 , Φnrst1 )

Coord4  ( θnrst2 , Φnrst2 )

Select the 3 closest points to the
required θr , Φr . And fit a plane

through them of the form :

P = aθ + bΦ + c

Feed the required θr , Φr  back into

the ‘plane equation’ to get the

interpolated value for P(θr , Φr)

END

Figure 5.11-1  Interpolation Flowchart
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Required Point : (θr, Ør)

Nearest neighbours :

C1 at ( θnrst1 , Φnrst1 )
C2 at  ( θnrst1 , Φnrst2 )

C3  at ( θnrst2 , Φnrst1 ) Discard
C4  at  ( θnrst2 , Φnrst2 )

θr

Ør

Interpolated Data Element

Geometry

Xg

Zg

Yg

c1
c2

c3
c4

Plane

P = aθ + bΦ + c

Theta cuts 0-180 Degrees 

for Phi = 0-360 Degrees

Figure 5.11-2  Interpolation Geometry

Hopefully the algorithm description will allow the user to trouble-shoot any problems using
this function. The main requirements are that the data complies with the following :

• Theta cuts from 0 to 180 degrees for Phi values from 0 to 360, step values should be
even. A full sphere data set is required to calculate directivity.

• Theta and Phi values should be in ascending order.

• Ideally the direction of propagation for the element is the Z-axis. For linearly polarised
elements the E-field should be aligned with the X-axis, for consistency with other
element models.

If a full sphere data set is not available then it should still be possible to plot normalised
pattern data. For example element data for (0<theta<90, 0<phi<360) is sufficient for a
planar array.
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APPENDIX A

Equations for use in the analysis of circular polarisation, see file : fieldsum.m.
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Let angle_diff = (angle(EVP)-angle(EHP))

If (angle_diff > π  or angle_diff < -π)      then     angle_diff = (π - angle_diff)

For a predominantly left-handed wave : angle_diff is  –ve and
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For a predominantly right-handed wave : angle_diff is  +ve and
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Where :

EMAJOR and EMAJOR are the major and minor axis of the polarisation ellipse (linear volts).

EVP and EHP are the magnitude of vertical and horizontal E-field components (linear volts).

EVP and EHP are vertical and horiz E-field vector components in complex form (linear volts).

γ is the phase angle between EVP and EHP.          τ is the tilt of the polarisation ellipse.

EL and ER are the magnitudes of left and right hand circularly polarised wave components.

In Eq A-4a/b EL = LHCP(co-polar)    and    ER  = LHCP(x-polar)

In Eq A-5a/b ER = RHCP(co-polar)   and    EL = RHCP(x-polar)


