Cone of influence
cone = conofinf(wname,scales,LenSig,SigVal)
[cone,PL,PR]
= conofinf(wname,scales,LenSig,SigVal)
[cone,PL,PR,PLmin,PRmax]
= conofinf(wname,scales,LenSig,SigVal)
[PLmin,PRmax]
= conofinf(wname,scales,LenSig)
[...] = conofinf(...,'plot'
)
returns
the cone of influence (COI) for the wavelet cone
= conofinf(wname
,scales
,LenSig
,SigVal
)wname
at
the scales in scales
and positions in SigVal
. LenSig
is
the length of the input signal. If SigVal
is
a scalar, cone
is a matrix with row dimension length(scales)
and
column dimension LenSig
. If isa
vector,
cone
is cell array of matrices.
[
returns
the left and right boundaries of the cone of influence atscale1for
the points in cone
,PL
,PR
]
= conofinf(wname
,scales
,LenSig
,SigVal
).
PL
and PR
are length(SigVal)
by2
matrices. The left boundaries are(1PL(:,2))./PL(:,1)
and
therightboundariesare(1PR(:,2))./PR(:,1)
.
[
returns
the equations of the lines that define the minimal left and maximal
right boundaries of the cone of influence. cone
,PL
,PR
,PLmin
,PRmax
]
= conofinf(wname
,scales
,LenSig
,SigVal
)PLmin
and PRmax
are
1by2 row vectors where PLmin(1)
and PRmax(1)
are
the slopes of the lines. PLmin(2)
and PRmax(2)
are
the points where the lines intercept the scale axis.
[
returns
the slope and intercept terms for the firstdegree polynomials defining
the minimal left and maximal right vertices of the cone of influence.PLmin
,PRmax
]
= conofinf(wname
,scales
,LenSig
)
[...] = conofinf(...,
plots
the cone of influence.'plot'
)


















Cone of influence for Mexican hat wavelet:
load cuspamax signal = cuspamax; wname = 'mexh'; scales = 1:64; lenSIG = length(signal); x = 500; figure; cwt(signal,scales,wname,'plot'); hold on [cone,PL,PR,Pmin,Pmax] = conofinf(wname,scales,lenSIG,x,'plot'); set(gca,'Xlim',[1 lenSIG])
Left minimal and right maximal vertices for the cone of influence (Morlet wavelet):
[PLmin,PRmax] = conofinf('morl',1:32,1024,[],'plot'); % PLmin = 0.1245*u+ 32.0000 % PRmax = 0.1250*u96.0000
Mallat, S. A Wavelet Tour of Signal Processing, London:Academic Press, 1999, p. 174.