Documentation

This is machine translation

Translated by
Mouse over text to see original. Click the button below to return to the English verison of the page.

flattopwin

Flat top weighted window

Syntax

`w = flattopwin(L)w = flattopwin(L,sflag)`

Description

Flat top windows have very low passband ripple (< 0.01 dB) and are used primarily for calibration purposes. Their bandwidth is approximately 2.5 times wider than a Hann window.

`w = flattopwin(L)` returns the `L`-point symmetric flat top window in column vector `w`.

`w = flattopwin(L,sflag)` returns the `L`-point symmetric flat top window using `sflag` window sampling, where `sflag` is either `'symmetric'` or `'periodic'`. The `'periodic'` flag is useful for DFT/FFT purposes, such as in spectral analysis. The DFT/FFT contains an implicit periodic extension and the periodic flag enables a signal windowed with a periodic window to have perfect periodic extension. When `'periodic'` is specified, `flattopwin` computes a length `L+1` window and returns the first `L` points. When using windows for filter design, the `'symmetric'` flag should be used.

Examples

collapse all

Create a 64-point symmetric flat top window. View the result using `wvtool`.

```N = 64; w = flattopwin(N); wvtool(w) ```

collapse all

Algorithms

Flat top windows are summations of cosines. The coefficients of a flat top window are computed from the following equation:

`$w\left(n\right)={a}_{0}-{a}_{1}\mathrm{cos}\left(\frac{2\pi n}{N-1}\right)+{a}_{2}\mathrm{cos}\left(\frac{4\pi n}{N-1}\right)-{a}_{3}\mathrm{cos}\left(\frac{6\pi n}{N-1}\right)+{a}_{4}\mathrm{cos}\left(\frac{8\pi n}{N-1}\right),$`

where $0\le n\le N-1$. The coefficient values are

CoefficientValue
a00.21557895
a10.41663158
a20.277263158
a30.083578947
a40.006947368

References

[1] D'Antona, Gabriele, and A. Ferrero. Digital Signal Processing for Measurement Systems. New York: Springer Media, 2006, pp. 70–72.

[2] Gade, Svend, and Henrik Herlufsen. "Use of Weighting Functions in DFT/FFT Analysis (Part I)." Windows to FFT Analysis (Part I): Brüel & Kjær Technical Review, No. 3, 1987, pp. 1–28.